Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W promocyjną podróż po USA ruszył Algaeus, czyli hybrydowa Toyota Prius zasilana paliwem z alg. Twórcy pojazdu, Toyota i Sapphire twierdzą, że jest on w stanie przejechać 150 mil na jednym galonie paliwa. Oznacza to, że samochód spala 1,56 litra na 100 kilometrów.

Algaeus to Toyota prius wyposażona w dodatkowy akumulator, możliwość podłączenia do sieci oraz zaawansowany system zarządzania energią. Silnik pojazdu nie został w żaden sposób zmodyfikowany pod kątem wykorzystywanego paliwa.

W miastach pojazd będzie korzystał tylko z silnika elektrycznego, a poza nimi - ze spalinowego i elektrycznego.

Samochód, który wczoraj wyruszył z San Francisco, zakończy swoją podróż 18 września w Nowym Jorku.

Share this post


Link to post
Share on other sites

Rozumiem, że energia przechowywana w akumulatorze dla silnika elektrycznego nie jest wliczana w te 1,56 litra paliwa?

 

To trochę tak jakbym powiedział, że mogę przeżyć przez rok wypijając tylko jedną butelkę wody mineralnej. No bo przecież to nie znaczy, że nie będę wody pić w ogóle - mogę ją przyjmować w postaci piwa, mleka, soków itd..

 

Także takie trochę to propagandowe jest - bo na ten prąd, który siedzi w akumulatorze, idzie ileś kilogramów węgla w elektrowni, oraz stosowna emisja SO2, CO, CO2 itd..

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Japonia jest pierwszym krajem, który zezwoli na tworzenie samodzielnie żyjących ludzko-zwierzęcych hybryd. Naukowcy będą mogli tworzyć zwierzęce embriony zawierające ludzkie komórki i wprowadzać je do organizmów zwierząt.
      Hiromitsu Nakauchi, który stoi na czele zespołu z Uniwersytetu Tokijskiego i Uniwersytetu Stanforda, planuje hodowanie ludzkich komórek w embrionach myszy i szczurów, następnie wszczepianie ich do surogatek odpowiednich gatunków. Ostatecznym celem jest stworzenie zwierząt z ludzkimi organami, które będzie można przeszczepiać ludziom.
      Aż do marca w Japonii obowiązywało prawo, które zakazywało utrzymywania przy życiu dłużej niż przez 14 dni zwierzęcych embrionów zawierających ludzkie komórki lub też przeszczepianie takich embrionów do surogatek. W marcu opracowano zasady zmieniające dotychczasowe przepisy, zezwalając na tworzenie hybryd, wszczepianie ich surogatkom i doprowadzanie do porodu.
      W innych krajach, w tym w USA, przepisy zabraniają na doprowadzanie do porodu hybryd. Zresztą od 2015 roku w Stanach Zjednoczonych w ogóle obowiązuje moratorium na badania nad hybrydami.
      Prace Nakauchiego są pierwszymi, które zostaną zaakceptowane na gruncie nowych przepisów. Zgoda powinna zostać wydana w sierpniu.
      Nakauchi twierdzi, że swoje prace będzie prowadził powoli i początkowo nie będzie oprowadzał do porodu. Na początku hybrydowe embriony myszy będą utrzymywane przy życiu przez 14,5 doby. W kolejnym etapie badań hybrydy szczura z ludzkimi komórkami będą hodowane przez 15,5 doby. Ciąża u szczurów trwa około 22 dni. Nakauchi ma następnie zamiar zwrócić się o zgodę na hodowanie przez 70 dni embrionów świni zawierających ludzkie komórki.
      Niektórzy bioetycy wyrażają obawy, że ludzkie komórki mogą opuścić organy, które mają z nich powstać, dostać się do rozwijającego mózgu zwierzęcia i wpłynąć na jego świadomość. Nakauchi zapewnia, że brał po uwagę taką możliwość i że na tyle kontroluje cały proces, iż komórki trafią tylko do tego organu, który ma powstać.
      Naukowcy chcą tworzyć zwierzęce embriony, którym brakuje genów niezbędnych do powstania konkretnego organu, następnie wstrzykiwać w embriony ludzkie indukowane pluripotencjalne komórki macierzyste, z których w ciele zwierzęcia rozwinie się ludzki organ.
      Już w 2017 roku Nakauchi poinformował, że w wraz z zespołem wstrzyknęli mysie indukowane pluripotencjalne komórki macierzyste do szczurzego embrionu, który nie był w stanie wytworzyć trzustki. U szczura wytworzyła się trzustka zbudowana całkowicie z mysich komórek. Następnie trzustka ta została przeszczepiona genetycznie zmodyfikowanej myszy, u której wywołano cukrzycę. Trzustka podjęła normalną pracę.
      Jednak z wyhodowaniem ludzkich organów nie będzie tak łatwo. W 2018 roku Nakauchi informował, że eksperyment z ludzkimi komórkami wszczepionymi do embrionu owcy nie powiódł się. Po 28 dniach embrion zawierał bardzo mało ludzkich komórek i nic, co przypominałoby trzustkę. Stało się tak prawdopodobnie ze względu na niewielkie powiązanie genetyczne pomiędzy człowiekiem a owcą.
      Jun Wu, który na University of Texas bada ludzko-zwierzęce hybrydy mówi, że nie ma sensu doprowadzanie do porodu hybryd embrionów tak odległych gatunków jak świnia czy owca oraz człowiek, gdyż ludzkie komórki zostaną szybko z embrionów wyeliminowane. Aby pokonać tę barierę i móc hodować ludzkie organy w organizmach zwierząt odległych od nas genetycznie musimy najpierw zrozumieć mechanizmy molekularne leżące u podstaw rozwoju.
      Dlatego też Nakauch chce pracować stopniowo, by dowiedzieć się, co ogranicza rozwój ludzkich komórek w zwierzęcych embrionach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Aspiryna zapobiega różnym nowotworom, np. rakowi jelita grubego, ale powoduje też wrzody i krwawienie z przewodu pokarmowego. Dodając dwa do dwóch, Khosrow Kashfi z The City College of New York stwierdził, że skoro wyściółka jelit chroni się przed uszkodzeniami, produkując tlenek azotu(II) i siarkowodór, warto stworzyć przeciwnowotworową wersję z oboma gazami - aspirynę-NOSH.
      Nowa aspiryna uwalnia NO i H2S podczas rozkładu. W artykule opublikowanym w Medicinal Chemistry Letters Kashfi ujawnił, że stworzono serię czterech hybrydowych aspiryn NOSH. Amerykanie dodawali je do 11 linii komórek nowotworowych, w tym raka prostaty, piersi czy trzustki. Linie miały różne pochodzenie: gruczołowe, nabłonkowe oraz limfocytowe. Okazało się, że [hybryda] jest znacznie skuteczniejsza od samej aspiryny. Wszystkie NOSH wyjątkowo efektywnie hamowały wzrost linii, ale najlepsza była hybryda NOSH-1. Później, bazując na wydzielaniu dyhydrogenazy mleczanowej (LDH), wykazano, że nie jest ona cytotoksyczna.
      Poziom LDH wzrasta w wyniku wzmożonego rozpadu czerwonych krwinek, stanowi także wykładnik obrotu komórkowego niektórych nowotworów, np. czerniaka czy białaczek.
      W przypadku raka jelita grubego skuteczność aspiryny-NOSH była aż 100.000 razy wyższa od zwykłej aspiryny. Komórki rakowe przestawały się dzielić i obumierały. Wszystko wskazuje więc na to, że do zwalczenia guza można będzie stosować mniejsze dawki.
      Podczas badań na zwierzętach Kashfi stwierdził, że aspiryna-NOSH im nie szkodzi. U gryzoni z ludzkim rakiem jelita grubego 18-dniowa terapia zmniejszyła guzy aż o 85%, nie uszkadzając przy tym jelita.
    • By KopalniaWiedzy.pl
      Włoskie Ministerstwo Ochrony Środowika oceniło, że rośnie niebezpieczeństwo katastrofy ekologicznej u wybrzeży Półwyspu Apenińskiego. Zbiorniki statku wycieczkowego Costa Concordia, który rozbił się o skały w pobliżu wyspy Giglio, są wypełnione 2300 tonami paliwa.
      Ryzyko dla środowiska jest bardzo, bardzo wysokie. Naszym celem jest zapobieżenie wyciekowi. Pracujemy nad tym, ale mamy coraz mniej czasu - powiedział minister Corrado Clini.
      Wokół Giglio istnieje naturalny park morski, znany ze zróżnicowanej fauny i flory, przejrzystych wód i świetnych warunków do nurkowania. Jak mówi Clini, władze nie wykluczają wprowadzenia stanu wyjątkowego, co pozwoliłoby na wykorzystanie funduszy przewidzianych na tego typu okoliczności.
      Największe zagrożenie dla statku stanowi pogarszająca się pogoda. Ratownicy obawiają się, że fale zepchną jednostkę w stronę pobliskiego zbocza i Costa Concordia zsunie się o kilkadziesiąt metrów wgłąb wód Morza Śródziemnego. Jeden z ekspertów, pracujących na miejscu katastrofy, stwierdził, że na razie statek mocno trzyma się na skałach, jednak fale z pewnością go przesuną.
      Zauważono już wyciek ze statku, jednak na razie nie wiadomo, czy jest to paliwo. Na wszelki wypadek ustawiono bariery ochronne. Paliwo, z którego korzysta Costa Concordia jest bardzo gęste i trudno jest je wypompować bez uprzedniego podgrzania. Jego usunięciem i likwidacją ewentualnego wycieku ma zająć się holenderska firma SMIT.
      Okazało się też, że ekolodzy od dawna przestrzegali przed tego typu katastrofą. Od lat walczyli, by wielkim statkom nie wolno było pływać w pobliżu Wysp Toskańskich (Giglio, Montecristo, Pianosa, Elba, Capraia i Gorgona). Minister Clini zgadza się z opinią organizacji ekologicznych, mówiąc, że propozycja trzymania wielkich jednostek z dala od tak cennych przyrodniczo i kulturowo obszarów to głos zdrowego rozsądku.
    • By KopalniaWiedzy.pl
      Na Rensselaer Polytechnic Institute trwają testy nowej obiecującej architektury do przechowywania wodoru. Nanoostrza mogą być używane wielokrotnie, bardzo szybko uwalniają i przyjmują wodór, a pracują przy znacznie niższych temperaturach niż podobne systemy. Dzięki tym właściwościom mogą okazać się przydatne przy konstruowaniu samochodów napędzanych wodorem.
      Pierwsze nanoostrza na bazie magnezu stworzono w 2007 roku. W przeciwieństwie do nanowłókien są one asymetryczne. W jednym wymiarze są niezwykle wąskie, w innym bardzo szerokie. Pomiędzy nimi jest do 1 mikrometra wolnej przestrzeni.
      Przechowywanie wodoru wymaga zastosowania dużych powierzchni. Dzięki temu, że nanoostrza są asymetryczne, można tę duża powierzchnię uzyskać.
      Nanoostrza stworzono metodą chemicznego osadzania pod kątem z fazy gazowej. Nanostruktura jest uzyskiwana poprzez doprowadzenie materiału - w tym przypadku magnezu - do fazy gazowej, a następnie umożliwienie mu osadzania się na podłożu. Po ukończeniu procesu osadzania na powierzchni materiału umieszcza się metaliczne kryształy, które więżą wodór. Prototypowe ostrza pokryto palladem.
      Departament Energii wysoko zawiesił poprzeczkę dla technologii przechowywania wodoru. Wszystkie nowe materiały muszą pracować w niskich temperaturach, szybko uwalniać wodór, mieć rozsądną cenę oraz nadawać się do recyklingu - mówi Yu Liu, jeden z badaczy.
      Naukowcy odkryli, że nanoostrza uwalniają wodór już w temperaturze 67 stopni Celsjusza. Przy temperaturze 100 stopni Celsjusza cały wodór zostaje uwolniony w zaledwie 20 minut. Inne technologie wymagają zastosowania ponaddwukrotnie wyższej temperatury, by tak szybko uwolnić wodór.
      Badania przeprowadzone za pomocą dyfrakcji odbiciowej wysokoenergetycznych elektronów (RHEED - reflection high-energy electron diffraction) oraz temperaturowo programowalnej desorpcji (TPD - temperature programmed desorption) wykazały, że prototypowe nanoostrza są w stanie wytrzymać ponad 10 cykli ładowania i rozładowywania.
      Naukowcy będą teraz pracowali nad wydłużeniem żywotności ostrzy, gdyż wiedzą już, jaka jest przyczyna ich stopniowej degradacji.
    • By KopalniaWiedzy.pl
      Naukowcy z Rice University dowodzą, że siatka stworzona z karbynu z dołączonym wapniem, może przechowywać znacznie więcej wodoru, niż przewidują wyznaczone przez Departament Energii normy dla samochodów napędzanych wodorem.
      Karbyn to pojedynczy łańcuch atomów węgla. To forma, którą uzyskamy, gdy z płachty grafenu wyciągniemy jedną nitkę. Do niedawna był on uznawany za bardzo egzotyczny materiał, jednak udowodniono, że może być syntetyzowany i pozostaje stabilny w temperaturze pokojowej, co czyni go potencjalnym kandydatem do codziennych zastosowań.
      Fizyk teoretyczny profesor Boris Yakobson z Rice University zwraca uwagę, że inne formy węgla, takie jak nanorurki, grafen czy fullereny, przechowują wodór tylko w niskich temperaturach. Tymczasem, jak stwierdził uczony, dzięki połączeniu karbynu z wapniem możliwe jest przechowywanie wodoru w temperaturze pokojowej. W wypełnionej wodorem siatce z karbynu wodór może teoretycznie stanowić około 50% wagi. Tymczasem DoE zakłada, że do roku 2015 w strukturach służących do przechowywania wodoru dla samochodów wodór powinien stanowić co najmniej 6,5% wagi.
      Decydującym elementem, dzięki czemu całość tak dobrze działa, jest dodanie wapnia. Dzięki niemu powstają takie łączenia między atomami, że przechowywanie wodoru jest możliwe w temperaturze pokojowej. Jako, że atomy wapnia nie mają tendencji do łączenia się w grupy, co pozwala na rozłożenie ich w formie podobnej do winogron na siatce z karbenu i dołączenie do każdego atomu wapnia sześciu atomów wodoru, co na początku umożliwi uzyskanie pojemności rzędu 8% wodoru na jednostkę wagi.
      Zdaniem Yakobsona istnieje wiele różnych możliwości zwiększania pojemności karbenowo-wapniowego zbiornika. Na przykład ułożenie siatki karbynu w kształt diamentu pozwoli co prawda na przyłączenie do atomu wapnia pięciu atomów wodoru, ale dzięki manipulacji liczbą atomów węgla można zwiększać pojemność całości. Być może uda się też wyciągać wzbogacane wapniem nitki karbynu z grafenu.
      Yakobson mówi, że w tej chwili trudno jednoznacznie wyrokować, która z teoretycznych strategii sprawdzi się najlepiej. Jestem optymistą. Z teoretycznego punktu widzenia oraz opierając się na wiedzy zdobytej podczas doświadczeń z syntezą karbynu i pracy z metalowymi organicznymi ramkami do przechowywania wodoru, mogę przypuszczać, że miną 2-3 lata zanim wyprodukujemy karbynową siatkę, a 1-2 lat zajmie nam opracowanie takich metod umieszczania na niej wapnia, by osiągnąć materiał zdolny do przechowywania dużej ilości wapnia. Tak więc w ciągu 3-5 lat możemy mieć wyprodukowaną próbkę i później będzie można, dzięki intensywnej pracy i mając nieco szczęścia, skalować ją do produkcji przemysłowej - mówi uczony.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...