Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Astronomowie pracujący zatrudnieni przy projekcie WASP (Wide Angle Search for Planets) dokonali drugiego w ostatnim czasie odkrycia niezwykłej planety.

"Gorący Jowisz", czyli gazowy gigant nazwany Wasp-18b, okrąża gwiazdę Wasp-18 znajdującą się w odległości około 330 lat świetlnych od Ziemi. Obiekt wielkości Jowisza charakteryzuje się masą 10-krotnie większą od tej planety. Najdziwniejsza jest jednak jej orbita. Wasp-18b znajduje się w odległości zaledwie 3 milionów kilometrów od swojej gwiazdy. To 50-krotnie bliżej niż odległość od Słońca do Ziemi. Czas obiegu nowo odkrytej planety wokół jej gwiazdy to zaledwie 22,6 godziny. Dotychczas znamy ponad 370 planet poza Układem Słonecznym i Wasp-18b jest drugą o tak krótkiej orbicie.

Planeta, która znajduje się tak blisko gwiazdy powinna opaść na nią w ciągu miliona lat. Tymczasem Wasp-18b liczy sobie około miliarda lat. Nie powinna już zatem istnieć.

Astronom Douglas P. Hamilton z University of Maryland, który jest autorem komentarza do raportu na temat niezwykłej planety, ma kilka teorii, które mogą wyjaśniać fakt ciągłego istnienia Wasp-18b. Być może, twierdzi, gwiazda Wasp18 ma tysiące razy mniej energii, niż się można spodziewać, a więc przyciąga planetę z mniejszą siłą. To przyciąganie powoduje, że po każdym okrążeniu planeta ma mniej energii, by utrzymać orbitę i w końcu spada na gwiazdę. Jednak, jak zauważa Hamilton, jeśli rzeczywiście gwiazda posiada tysiące razy mnie energii, to oznacza, że współczesna nauka nie do końca rozumie składu i charakterystyk gwiazd podobnych do Słońca.

Drugie wyjaśnienie jest takie, że Wasp-18b stosunkowo niedawno została wybita ze swojej orbity np. przez inną planetę. Jeśli tak, to w ciągu najbliższych lat naukowcy będą w stanie zaobserwować jej powolne opadanie na gwiazdę.

Trzecią dopuszczaną przez Hamiltona możliwością jest przeoczenie czegoś przez naukowców. Być może istnieje jakaś właściwość gwiazd lub sił oddziałujących między nimi a planetami, której nie rozumiemy.

Hamilton zdaje się skłaniać ku trzeciej możliwości. Przywołuje tutaj tajemnicę z naszego sąsiedztwa. Fobos, księżyc Marsa, jest tak blisko swej planety, że powinien na nią spaść w ciągu 30 milionów lat. Tymczasem liczy nasz Układ Słoneczny liczy sobie 4-5 miliardów lat.

Share this post


Link to post
Share on other sites

A co z wiatrem "słonecznym"? Im bliżej gwiazdy znajduje się planeta, tym silniej wiatr odpycha tę planetę, bo jest mniej rozproszony. Jeżeli więc planeta jest odpowiednio lekka, to kto wie...

Share this post


Link to post
Share on other sites

A może skoro masę ma większą 10-krotnie od Jowisza, to i moment pędu czy coś podobnego ma też większe i dzięki temu udaje się jej uciekać tak długo przed przyciąganiem ?

 

Spałem na fizyce jakby co :P

Share this post


Link to post
Share on other sites

Słońce ma masę 1000 razy większą od Jowisza - nie dość że spałeś na fizyce, to jeszcze nie umiesz korzystać z google`a :P

Nigdzie w artykule nie było o tym wzmianki, więc uznałem że masa Wasp-18 jest podobna do masy Słońca, tak więc tylko masa i odległość Wasp-18b od macierzystej gwiazdy jest inna niż w przypadku Słońca i Jowisza...

Share this post


Link to post
Share on other sites

w środku są kosmici i by przeżyć po nastaniu niekorzystnych dla swojej planety zjawisk nadali jej dziwne właściwości

Share this post


Link to post
Share on other sites

Po 1690 nastąpił wielki kryzys, więc Jowisz był na przymusowej diecie. W tym samym czasie Twardowski dostał eksmisję z księżyca, zmieniła się dokładność pomiarów ciał niebieskich i pełno różnych rzeczy. Polecam książki sprzed 16 wieku - na pewno będzie tam więcej informacji, które będą pasowały do Twoich teorii...

Share this post


Link to post
Share on other sites

Po 1690 nastąpił wielki kryzys, więc Jowisz był na przymusowej diecie. W tym samym czasie Twardowski dostał eksmisję z księżyca, zmieniła się dokładność pomiarów ciał niebieskich i pełno różnych rzeczy. Polecam książki sprzed 16 wieku - na pewno będzie tam więcej informacji, które będą pasowały do Twoich teorii...

ale 1690 to 17 (XVII) wiek :D

 

Co do artykułu, mikroos, ale Mars nie jest gwiazdą, a odpycha ten swój księżyc.

Ja bym prędzej skłaniał się do teorii o pędzie, skoro obieg wokół gwiazdy to tylko 22h to prędkość musi być dość duża, dodajemy dużą masę... pytanie, czy naukowcy tego nie uwzględnili, w końcu to coś pewnie zwalnia, a

powinna opaść na nią w ciągu miliona lat
to chyba długo?

Ja obstawiam, że tam niedaleko jest inna planeta albo czarna dziura, która odciąga tę planetę od gwiazdy :P

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA ujawniła, że powrót człowieka na Księżyc, zaplanowany na rok 2024, będzie kosztował 28 miliardów dolarów, z czego 16 miliardów to koszt księżycowego lądownika. Budżet musi zostać jeszcze zatwierdzony przez Kongres. Jeśli parlamentarzyści wyrażą zgodę, to kwota 28 miliardów USD zostanie rozpisana w budżecie na lata 2021–2025.
      Administrator NASA, Jim Bridenstine, przyznał w telefonicznym wywiadzie z dziennikarzami, że największym ryzykiem są tutaj kwestie polityczne. Za niecałe 2 miesiące w USA odbędą się zarówno wybory prezydenckie  jak i do Kongresu. Jako, że powrót USA na Księżyc to jedno z priorytetowych zadań, jakie przed NASA postawił prezydent Trump, można spodziewać się ostrych sporów wokół projektu i jego budżetu.
      Jim Bridenstine powiedział, że jeśli Kongres zatwierdzi pierwszą transzę wydatków w kwocie 3,2 miliarda dolarów, to NASA będzie w stanie przeprowadzić lądowanie w 2024 roku. Żeby było jasne, wybieramy się na Biegun Południowy. To bezdyskusyjne, stwierdził Bridenstine, odnosząc się do pogłosek, jakoby miejsce lądowania było podobne, jak podczas misji Apollo, kiedy to ludzi wysyłano na księżycowy równik.
      Obecnie NASA rozważa trzy propozycje budowy księżycowego lądownika. Jeden z nich rozwijany jest przez firmę Jeffa Bezosa Blue Origin, we współpracy z Lockheedem Martinem, Northropem Grummanem oraz Draperem. Jedną propozycję złożyła SpaceX i jedną firma Dynetics.
      Pierwszy, bezzałogowy lot w ramach programu Artemis, Artemis I został zaplanowany na listopad 2021. Wówczas to wystartuje rakieta SLS z kapsułą Orion. Misja Artemis II odbędzie się w roku 2023. Wówczas to astronauci okrążą Księżyc, ale nie będą lądowali. Na Srebrnym Globie wyląduje Artemis III. Astronauci pozostaną na Księżycu przez tydzień. W tym czasie opuszczą lądownik 2 do 5 razy. Badania, które przeprowadzą, będą całkowicie różne od tego, co robiono wcześniej. Musimy pamiętać, że w epoce Apollo sądziliśmy, że Księżyc jest suchy jak pieprz. Teraz wiemy, że jest tam pełno lodu i wiemy, że znajduje się on na Biegunie Południowym, dodaje Bridenstine.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.
      Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.
      Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.
      Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.
      Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.
      Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Planety powstają wokół młodych gwiazd znacznie szybciej, niż sądzono. Z nowych badań wynika, że formują się one w czasie krótszym niż 500 000 lat. Spostrzeżenie to może rozwiązać problem trapiący astronomów od 2018 roku, kiedy to zauważono, że w miejscach tworzenia się planet jest zbyt mało, by mogły się one narodzić.
      Uchwycenie tworzącej się planety jest bardzo trudne, gdyż jej gwiazda i otaczający ją dysk protoplanetarny dają znacznie silniejszy sygnał niż rodząca się niewielka planeta.
      Autorzy wcześniejszych badań, chcąc sprawdzić, jak dużo materiału znajduje się w dysku protoplanetarnym, wykorzystywali Atacama Large Milimeter/submilimeter Array (ALMA) i badali dyski wokół gwiazd liczących sobie od 1 do 3 milionów lat. Uzyskane wyniki wskazywały, że masa dysku nie pozwala na utworzenie nawet jednej planety wielkości Jowisza. To zaś wskazywało, że albo astronomowie nie dostrzegają jakiegoś rezerwuaru materii, albo powinni przyjrzeć się jeszcze młodszym gwiazdom.
      Autor najnowszych badań, Łukasz Tychoniec, student z Leiden Observatory, uznał, że zamiast szukać zaginionej masy, trzeba badać młodsze gwiazdy. Wraz z kolegami wykorzystał ALMA oraz Very Large Array (VLA) i za ich pomocą przyjrzał się 77 protogwiazdą z obłoku molekularnego Perseusza. To gigantyczny region formowania się gwiazd, który znajduje się w odległości zaledwie 1000 lat świetlnych od Ziemi. Obserwowane przez Tychońca gwiazdy miały od 100 do 500 tysięcy lat.
      Obserwacje wykazały, że dyski protoplanetarne tak młodych gwiazd zawierają o cały rząd wielkości więcej materiału niż dyski gwiazd starszych o zaledwie 1–2 miliony lat.
      Astrofizyk Megan Andsell z NASA mówi, że fakt przeprowadzenia badań na dużej próbce gwiazd oraz wykorzystanie dwóch narzędzi, które działają w nieco innych długościach fali, powoduje, iż badania Tychońca wnoszą znaczący wkład w zrozumienie formowania się planet. Uczona zauważa jednak, że byłoby lepiej zbadać regiony formowania się gwiazd w różnych obłokach molekularnych, gdyż być może w obłoku Perseusz panują wyjątkowe warunki środowiskowe.
      Tychoniec zapowiada, że wraz z zespołem ma zamiar bardziej szczegółowo przyjrzeć się jeszcze większej liczbie młodych gwiazd.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słońce wydaje się znacznie mniej aktywne niż inne podobne mu gwiazdy. Do takich zaskakujących wniosków doszedł międzynarodowy zespół astronomów, który przeanalizował dane z Teleskopu Kosmicznego Keplera. Odkrycie, dokonane przez grupę kierowaną przez Timo Reinholda z Instytutu Badań Układu Słonecznego im. Maxa Plancka, pozwoli na lepsze zrozumienie ewolucji naszej gwiazdy.
      Ludzkość od wieków obserwuje Słońce i od dawna wiemy, że znaczących zmianach liczby plam na nim występujących. Wiemy też, że im więcej plam, tym większa aktywność gwiazdy i tym silniejsze gwałtowne wydarzenia, jak wyrzuty masy. Specjaliści spodziewali się, że inne gwiazdy podobne do Słońca zachowują się w podobny sposób na tym samym etapie życia.
      Nie jesteśmy w stanie obserwować plam na innych gwiazdach, jednak przemieszczanie się plam na powierzchni gwiazd powoduje zmiany ich jasności. Dzięki temu możemy obserwować aktywność magnetyczną odległych gwiazd. Zespół Reinholda postanowił wykorzystać te dane do porównania aktywności Słońca z innymi podobnymi mu gwiazdami.
      Teleskop Kosmiczny Keplera badał i rejestrował zmiany w jasności 150 000 gwiazd. W tym samym czasie sonda Gaia obserwowała gwiazdy i określała ich pozycję oraz ruch we wszechświecie. Teraz uczeni przeanalizowali te dane i na ich podstawie zidentyfikowali 369 gwiazd o temperaturze, masie, wieku, składzie chemicznymi i prędkości obrotowej podobnych do Słońca. Okazało się, że – wbrew oczekiwaniom – większość tych gwiazd jest znacznie bardziej aktywnych od Słońca. Średnia wartość zmian ich jasności była aż 5-krotnie większa niż zmiany jasności naszej gwiazdy.
      Naukowcy proponują dwa możliwe wyjaśnienia tak wielkiej różnicy. Jedno z nich zakłada, że zmiany jasności niektórych gwiazd podobnych do Słońca są tak niewielkie, iż Kepler ich nie zauważył, co sztucznie zwiększyło średnią dla całej grupy. Drugie wyjaśnienie brzmi, że mamy tu do czynienia z prawdziwymi średnimi zmianami jasności, a to sugeruje, że w przeszłości Słońce również przechodziło okres tak dużej aktywności. To drugie przypuszczenie jest zgodne z wcześniejszymi badaniami, które wskazywały, że gwiazdy z ciągu głównego, gdy zbliżają się do połowy okresu swojego istnienia, znacznie zmniejszają swoją aktywność utrzymując wcześniejszą prędkość obrotową.
      Zespół Reinholda ma zamiar wyjaśnić te kwestie, wykorzystując w tym celu przyszłe pomiary, jakie będą dokonywane przez instrumenty TESS i PLATO.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wieloletnie obserwacje prowadzone za pomocą Very Large Telescope (VLT) potwierdzają, że gwiazda krążąca wokół supermasywnej czarnej dziury ulega precesji Schwarzschilda, zatem jej orbita jest zgodna z przewidywaniami ogólnej teorii względności Einsteina, a nie grawitacji Newtona. Jej kolejne orbity rysują rozetę.
      Ogólna teoria względności przewiduje, że związana orbita jednego obiektu krążącego wokół innego nie będzie zamknięta, jak wynikałoby z grawitacji newtonowskiej, ale będzie ulegała precesji w kierunku płaszczyzny ruchu. To słynne zjawisko, które po raz pierwszy zaobserwowano w przypadku orbity Merkurego wokół Słońca, było pierwszym dowodem na prawdziwość ogólnej teorii względności. Sto lat później obserwujemy ten sam efekt w ruchu gwiazdy wokół kompaktowego źródła sygnału radiowego Sagittarius A* w centrum Drogi Mlecznej. Te przełomowe badania potwierdzają, że Sagittarius A* musi być supermasywną czarną dziurą o masie 4 milionów mas Słońca, powiedział Reinhard Genzel, dyrektor Instytutu Fizyki Pozaziemskiej im Maxa Plancka i jeden z głównych autorów badań.
      Od 1992 roku międzynarodowy zespół naukowy prowadzony przez Franka Eisenhauera obserwuje gwiazdę S2 krążącą wokół czarnej dziury znajdującej się w centrum naszej galaktyki. W pobliżu Sagittarius A* znajduje się gęsta gromada gwiazd. Wyróżnia się w niej S2, która krąży wokół dziury, zbliżając się do nej na odległość około 120 jednostek astronomicznych. To jedna z gwiazd najbliższych tej czarnej dziurze. W miejscu, gdzie S2 podlatuje najbliżej Sagittarius A* prędkość gwiazdy wynosi niemal 3% prędkości światła (ok. 9000 km/s). Gwiazda okrąża dziurę w ciągu 16 lat.
      Orbity większości planet i gwiazd nie są kołowe, zatem raz są bliżej, a raz dalej od obiektu, wokół którego krążą. Orbita S2 ulega precesji, co oznacza, że z każdym okrążeniem zmienia się punkt, w którym gwiazda jest najbliżej czarnej dziury. W ten sposób gwiazda kreśli wokół niej kształt rozety. Ogólna teoria względności bardzo precyzyjnie przewiduje takie zmiany orbity, a przeprowadzone właśnie obserwacje dokładnie zgadzają się z teorią, dowodząc jej prawdziwości.
      To pierwszy przypadek zmierzenia precesji Schwarszschilda w przypadku gwiazdy krążącej wokół supermasywnej czarnej dziury. To bardzo ważne obserwacje, gdyż, jak mówią Guy Perrin i Karine Perrault z Francji, pasują do ogólnej teorii względności tak dobrze, że możemy ustalić ścisłe granice dotyczące ilości niewidocznego materiału, jak rozproszona ciemna materia czy mniejsze czarne dziury, znajduje się wokół Sagittarius A*.
      Ze szczegółami badań można zapoznać się na łamach Astronomy & Physics.

      « powrót do artykułu
×
×
  • Create New...