Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Planeta, która nie powinna istnieć

Rekomendowane odpowiedzi

Astronomowie pracujący zatrudnieni przy projekcie WASP (Wide Angle Search for Planets) dokonali drugiego w ostatnim czasie odkrycia niezwykłej planety.

"Gorący Jowisz", czyli gazowy gigant nazwany Wasp-18b, okrąża gwiazdę Wasp-18 znajdującą się w odległości około 330 lat świetlnych od Ziemi. Obiekt wielkości Jowisza charakteryzuje się masą 10-krotnie większą od tej planety. Najdziwniejsza jest jednak jej orbita. Wasp-18b znajduje się w odległości zaledwie 3 milionów kilometrów od swojej gwiazdy. To 50-krotnie bliżej niż odległość od Słońca do Ziemi. Czas obiegu nowo odkrytej planety wokół jej gwiazdy to zaledwie 22,6 godziny. Dotychczas znamy ponad 370 planet poza Układem Słonecznym i Wasp-18b jest drugą o tak krótkiej orbicie.

Planeta, która znajduje się tak blisko gwiazdy powinna opaść na nią w ciągu miliona lat. Tymczasem Wasp-18b liczy sobie około miliarda lat. Nie powinna już zatem istnieć.

Astronom Douglas P. Hamilton z University of Maryland, który jest autorem komentarza do raportu na temat niezwykłej planety, ma kilka teorii, które mogą wyjaśniać fakt ciągłego istnienia Wasp-18b. Być może, twierdzi, gwiazda Wasp18 ma tysiące razy mniej energii, niż się można spodziewać, a więc przyciąga planetę z mniejszą siłą. To przyciąganie powoduje, że po każdym okrążeniu planeta ma mniej energii, by utrzymać orbitę i w końcu spada na gwiazdę. Jednak, jak zauważa Hamilton, jeśli rzeczywiście gwiazda posiada tysiące razy mnie energii, to oznacza, że współczesna nauka nie do końca rozumie składu i charakterystyk gwiazd podobnych do Słońca.

Drugie wyjaśnienie jest takie, że Wasp-18b stosunkowo niedawno została wybita ze swojej orbity np. przez inną planetę. Jeśli tak, to w ciągu najbliższych lat naukowcy będą w stanie zaobserwować jej powolne opadanie na gwiazdę.

Trzecią dopuszczaną przez Hamiltona możliwością jest przeoczenie czegoś przez naukowców. Być może istnieje jakaś właściwość gwiazd lub sił oddziałujących między nimi a planetami, której nie rozumiemy.

Hamilton zdaje się skłaniać ku trzeciej możliwości. Przywołuje tutaj tajemnicę z naszego sąsiedztwa. Fobos, księżyc Marsa, jest tak blisko swej planety, że powinien na nią spaść w ciągu 30 milionów lat. Tymczasem liczy nasz Układ Słoneczny liczy sobie 4-5 miliardów lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A co z wiatrem "słonecznym"? Im bliżej gwiazdy znajduje się planeta, tym silniej wiatr odpycha tę planetę, bo jest mniej rozproszony. Jeżeli więc planeta jest odpowiednio lekka, to kto wie...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A może skoro masę ma większą 10-krotnie od Jowisza, to i moment pędu czy coś podobnego ma też większe i dzięki temu udaje się jej uciekać tak długo przed przyciąganiem ?

 

Spałem na fizyce jakby co :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

'' skoro masę ma większą 10-krotnie od Jowisza '' [/size]Słońce ma masę 10x większą niż Jowisz.Tylko mi karmy nie psuj!!!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Słońce ma masę 1000 razy większą od Jowisza - nie dość że spałeś na fizyce, to jeszcze nie umiesz korzystać z google`a :P

Nigdzie w artykule nie było o tym wzmianki, więc uznałem że masa Wasp-18 jest podobna do masy Słońca, tak więc tylko masa i odległość Wasp-18b od macierzystej gwiazdy jest inna niż w przypadku Słońca i Jowisza...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Widzę ze coś się zmieniło od 1690 (Jowiszowi ubyło masy - to wina tej mody na odchudzanie albo sondy Pionier) :P 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Po 1690 nastąpił wielki kryzys, więc Jowisz był na przymusowej diecie. W tym samym czasie Twardowski dostał eksmisję z księżyca, zmieniła się dokładność pomiarów ciał niebieskich i pełno różnych rzeczy. Polecam książki sprzed 16 wieku - na pewno będzie tam więcej informacji, które będą pasowały do Twoich teorii...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Po 1690 nastąpił wielki kryzys, więc Jowisz był na przymusowej diecie. W tym samym czasie Twardowski dostał eksmisję z księżyca, zmieniła się dokładność pomiarów ciał niebieskich i pełno różnych rzeczy. Polecam książki sprzed 16 wieku - na pewno będzie tam więcej informacji, które będą pasowały do Twoich teorii...

ale 1690 to 17 (XVII) wiek :D

 

Co do artykułu, mikroos, ale Mars nie jest gwiazdą, a odpycha ten swój księżyc.

Ja bym prędzej skłaniał się do teorii o pędzie, skoro obieg wokół gwiazdy to tylko 22h to prędkość musi być dość duża, dodajemy dużą masę... pytanie, czy naukowcy tego nie uwzględnili, w końcu to coś pewnie zwalnia, a

powinna opaść na nią w ciągu miliona lat
to chyba długo?

Ja obstawiam, że tam niedaleko jest inna planeta albo czarna dziura, która odciąga tę planetę od gwiazdy :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
      Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
      Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
      Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
      Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
      Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
      Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
      Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
      A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy po Ziemi wędrowały dinozaury, na Księżycu wybuchały wulkany, twierdzą naukowcy z Chińskiej Akademii Nauk. Takie wnioski płyną z analizy materiału zebranego przez misję Chang'e-5. Mamy wiele dowodów wskazujących na aktywność wulkaniczną na Księżycu, nie wiadomo jednak, jak długo ona trwała. Najmłodsze datowane skały wulkaniczne mają 2 miliardy lat. Z badań przeprowadzonych przez Chińczyków wynika jednak, że dinozaury były świadkami wybuchów wulkanów na satelicie naszej planety.
      Bi-Wen Wang, Qiu-Li Li i ich koledzy opisali na łamach Science wyniki badań nad materiałem przywiezionym przez Chang'e-5. Ta wystrzelona w 2020 roku misja wylądowała w północnym regionie Oceanus Procellarum, zebrała 1,7 kilograma próbek i w grudniu przywiozła je na Ziemię. Były to pierwsze próbki przywiezione bezpośrednio z Księżyca od czasu radzieckiej misji Luna 24 z 1976 roku i jednocześnie jedyne próbki z obszaru położonego tak daleko na północy.
      Wang i jego zespół przyjrzeli się około 3000 miniaturowych (wielkości od 20 do 400 mikrometrów) fragmentów szkliwa, które znalazły się w przywiezionym materiale. Szkliwo takie może powstawać w wyniku uderzeń meteorytów oraz erupcji wulkanicznych. wykorzystali przy tym badania składu próbek oraz pomiary stosunku izotopów, by odróżnić od siebie oba rodzaje szkliwa. Zdecydowaną większość badanych fragmentów uznali za powstałe w wyniku olbrzymiej temperatury powstałej w trakcie uderzenia meteorytów. Jednak trzy fragmenty zostały uznane, na podstawie składu chemicznego i badań izotopów siarki, za pochodzące z aktywności wulkanicznej. Co więcej, ich skład chemiczny był bardzo podobny do składu szkła wulkanicznego zebranego przez astronautów misji Apollo.
      Jednak najważniejsze było określenie tych trzech fragmentów. Datowanie metodą uranowo-ołowiową wykazało, że maja one 123 miliony lat (±15 milionów). Dodatkowo wysoka zawartość toru i pierwiastków ziem rzadkich dodatkowo potwierdza tak niedawny wulkanizm na Księżycu.
      Wyniki badań są zaskakujące. Jeśli chińscy uczeni mają rację, oznacza to, że Księżyc był aktywny wulkanicznie niemal przez całą swoją historię. Inne dowody wskazują bowiem na wulkanizm sprzed 4,4 miliarda lat temu. Przez długi czas uważano, że procesy wulkaniczne zatrzymały się co najmniej miliard lat temu. Pojawiają się jednak sugestie, że być może procesy takie trwały jeszcze około 100 milionów lat temu.
      Teraz Chińczycy jako pierwsi donoszą o wynikach badań laboratoryjnych wskazujących, że Księżyc był aktywny jeszcze całkiem niedawno. To zaś rodzi pytanie, czy głęboko pod jego powierzchnią istnieją pierwiastki radioaktywne zdolne do wytworzenia tak dużo energii, by istniały tam komory magmowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zachodzące w przestrzeni kosmicznej procesy, w czasie których powstają gwiazdy, mogą prowadzić też do pojawienia się obiektów o masie nieco większej od Jowisza. Badacze korzystający z Teleskopu Webba odkryli w mgławicy NGC 1333 aż sześć takich niezwykłych obiektów o masie planety, ale niepowiązanych grawitacyjne z żadną gwiazdą. Powstały w procesie takim, jak powstają gwiazdy, czyli zapadnięcia się gazu i pyłu, ale ich masa odpowiada masie planet. Badamy granice procesów formowania się gwiazd. Jeśli masz obiekt, który wygląda jak młody Jowisz, to czy jest możliwe, by w odpowiednich warunkach przekształcił się w gwiazdę? To ważne pytanie w kontekście zrozumienia powstawania gwiazd i planet, mówi główny autor badań, astrofizyk Adam Langeveld z Uniwersytetu Johnsa Hopkinsa.
      Dane z Webba sugerują, że odkryte obiekty mają masę od 5 do 10 razy większą niż masa Jowisza. To oznacza, że są jednymi z najlżejszych znanych nam obiektów, które powstały w procesach, w jakich powstają gwiazdy oraz brązowe karły, obiekty o masie 13–80 mas Jowisza, zbyt małej, by zaszła przemiana wodoru w hel.
      Wykorzystaliśmy niezwykła czułość Webba w zakresie podczerwieni, by odnaleźć najsłabiej świecące obiekty w młodej gromadzie gwiazd. Poszukujemy odpowiedzi na podstawowe dla astronomii pytanie o najmniej masywny obiekt podobny do gwiazdy. Okazuje się, że najmniejsze swobodne obiekty powstające w procesach takich, jak gwiazdy, mogą mieć masę taką, jak gazowe olbrzymy krążące wokół pobliskich gwiazd, wyjaśnia profesor Ray Jayawardhana, który nadzorował badania. Nasze obserwacje potwierdzają, że obiekty o masie planetarnej mogą powstawać w wyniku dwóch procesów. Jeden to kurczenie się chmur pyłu i gazu – czyli tak jak tworzą się gwiazdy – drugi zaś to powstawanie planet w znajdującym się wokół gwiazdy dysku akrecyjnym z pyłu i gazu. Tak właśnie powstał Jowisz i inne planety Układu Słonecznego, dodaje Jayawardhana.
      Najbardziej intrygującym z obiektów znalezionych przez Webba jest ten najlżejszy, o masie 5-krotnie większej od Jowisza. Obecność wokół niego dysku akrecyjnego wskazuje, że obiekt najprawdopodobniej uformował się takim procesie, w jakim powstają gwiazdy. Sam dysk również interesuje badaczy. Nie można wykluczyć, że mogą z nim pojawić się planety. To może być żłobek miniaturowego układu planetarnego, znacznie mniejszego niż nasz układ, dodaje Alexander Scholz, astrofizyk z University of St. Andrews.
      Co interesujące, Webb nie zarejestrował – a ma takie możliwości – żadnego obiektu o masie mniejszej niż 5 mas Jowisza. Może to oznaczać dolną granicę masy obiektów formujących się z zapadnięcia chmur pyłu i gazu.
      Autorzy badań przeanalizowali też profil światła wszystkich nowo znalezionych obiektów oraz dokonali ponownej analizy profilu światła 19 znanych brązowych karłów. Odkryli przy tym brązowego karła, który ma towarzysza o masie planety. To rzadkie znalezisko rzuca wyzwanie naszym modelom tworzenia się układów podwójnych.
      W najbliższych miesiącach naukowcy chcą zająć się analizą atmosfer nowo odkrytych obiektów i porównać je do brązowych karłów oraz gazowych olbrzymów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Science Advances opisano rewolucyjny scenariusz terraformowania Marsa i ogrzania jego powierzchni. Pomysł, przedstawiony przez naukowców z University of Chicago, Northwestern University oraz University of Central Florida, polega na uwolnieniu do atmosfery odpowiednio przygotowanych cząstek pyłu, które ogrzałyby Czerwoną Planetę o ponad 50 stopni Fahrenheita (ok. 28 stopni Celsjusza). Opisana metoda może być 5000 razy bardziej efektywna, niż dotychczas proponowane.
      Średnia temperatura na powierzchni Marsa wynosi -60 stopni Celsjusza, jej podniesienie o 28 stopni byłoby olbrzymią zmianą, pozwalającą na istnienie mikroorganizmów i wody w stanie ciekłym na dużych obszarach planety.
      Tym, co wyróżnia nową metodę jest wykorzystanie materiałów łatwo dostępnych ma Marsie. Wcześniej proponowane sposoby albo zakładały import materiałów z Ziemi, albo prowadzenie na Czerwonej Planecie działalności górniczej i wydobywanie rzadkich minerałów.
      Podniesienie temperatury planety trwałoby wiele dekad. Nie spowodowałoby, oczywiście, że przebywający na Marsie ludzie mogliby pozbyć się skafandrów czy oddychać tamtejszą atmosferą. Jednak położyłoby podwaliny, pod taki rozwój wydarzeń. Pozwoliłoby na istnienie wody w stanie ciekłym, istnienie mikroorganizmów oraz uprawę roślin, które stopniowo uwalniałyby tlen do atmosfery.
      Podstawowym krokiem na drodze ku uczynieniu Marsa bardziej zdatnym do życia, jest podniesienie temperatury. Można zrobić to samo, co ludzie niechcący zrobili na Ziemi, wypuścić do atmosfery materiał, który zwiększy naturalny efekt cieplarniany, utrzymując energię Słońca przy powierzchni planety. Problem w tym, że – niezależnie czym byłby taki materiał – potrzebne są jego gigantyczne ilości. Dotychczasowe propozycje zakładały albo przywożenie gazów z Ziemi, albo wydobywanie na Marsie potrzebnych materiałów. Jedno i drugie jest niezwykle kosztowne i trudne do zrealizowania. Autorzy najnowszych badań zastanawiali się, czy można do ogrzania Marsa wykorzystać jakiś obecny na miejscu łatwo dostępny materiał.
      Z dotychczasowych badań wiemy, że marsjański pył jest pełen żelaza i aluminium. Cząstki tego pyłu nie są w stanie ogrzać planety. Ich skład i rozmiary są takie, że po uwolnieniu do atmosfery doprowadziłyby do schłodzenia powierzchni Marsa.
      Naukowcy wysunęli hipotezę, że gdyby pył ten miał inny kształt, być może zwiększałby, a nie zmniejszał, efekt cieplarniany.
      Stworzyli więc cząstki o kształcie pręcików i rozmiarach komercyjnie dostępnego brokatu. Są one w stanie zatrzymywać uciekającą energię cieplną i rozpraszają światło słoneczne w stronę powierzchni planety.
      Sposób, w jaki światło wchodzi w interakcje z obiektami wielkości mniejszej niż długość fali, to fascynujące zagadnienie. Dodatkowo można tak przygotować nanocząstki, że pojawią się efekty optyczne wykraczające poza to, czego możemy spodziewać się po samych tylko rozmiarach cząstek. Uważamy, że możliwe jest zaprojektowanie nanocząstek o jeszcze większe efektywności, a nawet takich, których właściwości optyczne zmieniają się dynamicznie, mówi współautor badań, Ansari Mohseni.
      A profesor Edwin Kite dodaje, że zaproponowana metoda wciąż będzie wymagała użycia milionów ton materiału, ale to i tak 5000 razy mniej, niż zakładały wcześniejsze propozycje. To zaś oznacza, że jest ona tańsza i łatwiejsza w użyciu. Ogrzanie Marsa do tego stopnia, by na jego powierzchni istniała ciekła woda, nie jest więc tak trudne, jak dotychczas sądzono, dodaje Kite.
      Z obliczeń wynika, że gdyby wspomniane cząstki były stale uwalniane w tempie 30 litrów na sekundę, to z czasem średnia temperatura na powierzchni Marsa mogłaby wzrosnąć o 28 stopni Celsjusza, a pierwsze efekty takich działań byłyby widoczne już w ciągu kilku miesięcy. Efekt cieplarniany można by też odwrócić. Wystarczyłoby zaprzestać uwalniania cząstek, a w ciągu kilku lat sytuacja wróciłaby do normy.
      Autorzy propozycji mówią, że potrzebnych jest jeszcze wiele badań. Nie wiemy na przykład dokładnie, w jakim tempie uwolnione cząstki krążyłyby w atmosferze. Ponadto na Marsie występuje woda i chmury. W miarę ogrzewania atmosfery mogłoby dochodzić do kondensacji pary wodnej na uwolnionych cząstkach i ich opadania wraz z deszczem. Klimatyczne sprzężenia zwrotne są bardzo trudne do modelowania. Żeby zaimplementować naszą metodę musielibyśmy mieć więcej danych z Marsa i Ziemi. Musielibyśmy też pracować powoli i mieć pewność, że skutki naszych działań są odwracalne, dopiero wtedy moglibyśmy zyskać pewność, że to zadziała, ostrzega Kite. Ponadto, jak podkreśla uczony, badacze skupili się na aspektach związanych z podniesieniem temperatury do poziomu użytecznego dla istnienia mikroorganizmów i potencjalnej uprawy roślin, a nie na stworzeniu atmosfery, w której ludzie będą mogli oddychać.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...