Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W przyszłości urządzenia elektroniczne mogą być mniejsze, szybsze, bardziej wydajne, a przy tym pobierać mniej energii. Wszystko dzięki najnowszym pracom specjalistów z Oak Ridge National Laboratory.

Udało się im opracować metodę pomiaru wewnętrznego przewodnictwa materiałów ferroelektrycznych. Od lat są one uważane za bardzo obiecujące materiały, jednak brak precyzyjnych metod pomiaru, a co za tym idzie, brak możliwości kontrolowania tych właściwości, nie pozwalał na pełne ich wykorzystanie.

Od dawna poważnym wyzwaniem jest opracowanie materiału, który w nanoskali może pracować jak przełącznik i służyć do przechowywania informacji w systemie dwójkowym. Jesteśmy bardzo podekscytowani naszym odkryciem i jego konsekwencjami. Od dawna podejrzewano, że przewodnictwo elektryczne w ferroelektrykach może charakteryzować się bistabilnością - mówi Peter Maksymovych. Wykorzystanie tej właściwości pozwoli na skonstruowanie niezwykle gęstych układów pamięci - dodaje.

Naukowcom udało się dowieść istnienia gigantycznego elektrooporu w konwencjonalnych materiałach ferroelektrycznych. Odwrócenie w nich spontanicznej polaryzacji zwiększa przewodnictwo aż o 50 000 procent. Bardzo ważną cechą ferroelektryków jest ich zdolność do zachowania polaryzacji. To jak otwieranie malutkich drzwi, przez które mogą przejść elektrony. Te drzwi mają wielkość mniejszą niż jedna milionowa cala i prawdopodobnie można je otworzyć w ciągu jednej miliardowej sekundy - cieszy się Maksymovych. Ferroelektrycznymi przełącznikami można manipulować za pośrednictwem właściwości termodynamicznych samych materiałów, co z kolei oznacza m.in. możliwość znacznej redukcji mocy i napięcia potrzebnych do zapisania i odczytania informacji.

Warto też wspomnieć, że badania przeprowadzone przez ORNL można było wykonać tylko dzięki temu, iż na ich potrzeby skonstruowano jedyny w swoim rodzaju instrument, zdolny mierzyć jednocześnie przewodnictwo i polaryzację tlenków w nanoskali w kontrolowanej próżni.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A tak po ludzku ? Jaki to może być skok wydajnościowy w porównaniu do obecnej generacji ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

  Też mi tego zabrakło. Mogliby podać jakieś szacunkowe dane.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślę, że trudno takie rzeczy podać. Dokonano po prostu pewnego odkrycia, które w przyszłości zaowocuje dalszymi pracami i pojawieniem się pewnych rozwiązań technicznych. Przypuszczam, że dopiero jak ktoś zacznie prace nad zastosowaniem odkrycia w praktyce, to dowiemy się, jakie mogą być z tego konkretne zyski.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Fakt, tym bardziej że świeżo odkryta technologia jest pewnie jeszcze mocno niedoskonała - na pewno uda się ją usprawnić, co znacząco może podnieść osiągnięcia technologii, która wejdzie na rynek.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Cornell University udowodnili, że przechodzenie promienia światła przez kabel optyczny może być kontrolowane przez inny promień światła. Możliwe jest zatem stworzenie całkowicie optycznego przełącznika.
      Obecnie w elektronice używamy przełączników elektrycznych. Zastąpienie ich technologią optyczną pozwoli na przyspieszenie pracy układów scalonych przy jednoczesnym zmniejszeniu poboru energii.
      Z idealną sytuacją mielibyśmy do czynienia, gdyby za pomocą jednego fotonu udało się sterować przepływem światła. Grupa profesora Alexandra Gaeta przybliżyła nas do momentu powstania idealnego przełącznika.
      Uczeni wypełnili światłowód fotoniczny oparami rubidu, a następnie na jednym jego końcu uruchomili promień podczerwony o długości fali 776 nanometrów, a na drugim wysłali sygnał kontrolny o długości 780,2 nanometra.
      W tak wąskiej „rurze", jaką jest światłowód, doszło do silnej interakcji światła z atomami rubidu. Gdy promień kontrolny był włączony, atomy absorbowały obie długości światła. Jednak gdy promień kontrolny wyłączano, główny promień przechodził przez światłowód bez przeszkód.
      Bardzo ważny jest fakt, że do wypełnienia funkcji kontrolnych wystarczyło mniej niż 20 fotonów, a przełączanie odbywało się z prędkością pięciu miliardowych części sekundy.
    • przez KopalniaWiedzy.pl
      Inżynierowie z University of California, Berkeley, zaprezentowali sposób na zmniejszenie minimalnego napięcia koniecznego do przechowywania ładunku w kondensatorze. Im szybciej działa komputer, tym cieplejszy się staje. Tak więc kluczowym problemem w produkcji szybszych mikroprocesorów jest spowodowanie, by ich podstawowy element, tranzystor, był bardziej energooszczędny - mówi Asif Khan, jeden z autorów odkrycia. Niestety tranzystory nie stają się na tyle energooszczędne, by dotrzymać kroku zapotrzebowaniu na coraz większe moce obliczeniowe, co prowadzi do zwiększenia poboru mocy przez mikroprocesory - dodaje uczony.
      W laboratorium Sayeefa Salahuddina, w którym jest zatrudniony Khan, od 2008 roku trwają prace nad zwiększeniem wydajności tranzystorów. W końcu, dzięki wykorzystaniu ferroelektryków, udało się osiągnąć założony cel.
      Ferroelektryki przechowują zarówno ładunki dodatnie jak i ujemne. Co więcej, składują je nawet po odłączeniu napięcia. Ponadto ich bardzo przydatną cechą jest możliwość zmiany polaryzacji elektrycznej za pomocą zewnętrznego pola elektrycznego.
      Naukowcy z Berkeley udowodnili, że w kondensatorze, w którym ferroelektryk połączono z dielektrykiem, można zwiększyć ładunek zgromadzony dla napięcia o konkretnej wartości.
      To prototypowe prace, które pozwolą nam wykorzystać zjawisko ujemnej pojemności, by zmniejszyć napięcie wymagane przez współczesne tranzystory - mówi Salahuddin, który już będąc studentem zastanawiał się nad zjawiskiem ujemnej pojemności w ferroelektrykach. Jeśli wykorzystamy to zjawisko do stworzenia niskonapięciowego tranzystora bez jednoczesnego zmniejszania jego wydajności i szybkości pracy, możemy zmienić cały przemysł komputerowy - dodaje uczony.
      Naukowcy połączyli ferroelektryk cyrkonian-tytanian ołowiu (PZT) z dielektrykiem tytanianem strontu (STO). Następnie do PZT-STO przyłożyli napięcie elektryczne i porównali jego pojemność elektryczną do pojemności samego STO.
      W strukturze z ferroelektrykiem zaobserwowaliśmy dwukrotne zwiększenie różnicy potencjałów elektrycznych przy tym samym przyłożonym napięciu, a różnica ta może być jeszcze większa - mówią uczeni.
      Zwiększająca się gęstość upakowania tranzystorów i zmniejszające się ich rozmiary nie pociągnęły za sobą odpowiedniego spadku wymagań co do poboru prądu potrzebnego do pracy. W temperaturze pokojowej do 10-krotnego zwiększenia ilości prądu przepływającego przez tranzystor wymagane jest napięcie co najmniej 60 miliwoltów. Jako, że różnica pomiędzy stanami 0 i 1 w tranzystorze musi być duża, to do sterowania pracą tranzystora konieczne jest przyłożenie napięcia nie mniejszego niż mniej więcej 1 wolt.
      To wąskie gardło. Prędkość taktowania procesorów nie ulega zmianie od 2005 roku i coraz trudniej jest dalej zmniejszać tranzystory - mówi Khan. A im mniejsze podzespoły, tym trudniej je schłodzić.
      Salahuddin i jego zespół proponują dodać do architektury tranzystorów ferroelektryk, dzięki któremu można będzie uzyskać większy ładunek z niższego napięcia. Takie tranzystory będą wydzielały mniej ciepła, więc łatwiej będzie je schłodzić.
      Zdaniem uczonych warto też przyjrzeć się ferroelektrykom pod kątem ich zastosowania w układach DRAM, superkondensatorach czy innych urządzeniach do przechowywania energii.
    • przez KopalniaWiedzy.pl
      Materiały będące jednocześnie ferromagnetykami i ferroelektrykami występują w naturze niezwykle rzadko. Jednak połączenie takich właściwości w jednym materiale jest bardzo pożądane - można by bowiem tworzyć zeń energooszczędne układy pamięci, bardzo wrażliwe czujniki czy charakteryzujące się dużą elastycznością urządzenia emitujące mikrofale.
      Pierwszy ferromagnetyczny ferroelektryk - boracyt niklu - został odkryty w 1966 roku. Od ponad 40 lat trwają poszukiwania innych tego typu materiałów. Dotychczas znaleziono kilka, ale żaden z nich nie wykazuje tak silnych właściwości ferroelektrycznych i ferromagnetycznych jak ten pierwszy.
      Tak było jeszcze do niedawna. Uczeni z Cornell University stworzyli ferromagnetych ferroelektryczny o tak dobrych właściwościach, że potencjalnie może on zrewolucjonizować elektronikę. Naukowcy zauważyli, że po fizycznym rozciągnięciu kawałka tytanianu europu o grubości kilku nanometrów i umieszczeniu go na podłożu ze skandanu dysprozu uzyskamy najlepszy ze znanych nam materiałów o właściwościach ferrelektrycznych i ferromagnetycznych. Są one 1000-krotnie silniejsze niż występujące w boracycie niklu.
      Wcześniej naukowcy szukali materiałów, które w sposób naturalny są ferromagnetycznymi ferroelektrykami - mówi Darrell Schlom, główny autor badań.
      My szukaliśmy materiałów, które nie są ani ferromagnetykami, ani ferroelektrykami - a takich jest wiele - ale mogą się takimi stać po ściśnięciu lub rozciągnięciu - wtóruje mu Craig Fennie, jego współpracownik.
      Badania Amerykanów pokazują, że warto jest przyjąć właśnie taką strategię poszukiwania ferromagnetycznych ferroelektryków. Niewykluczone, że dzięki niej zostaną znalezione kolejne materiały, o jeszcze lepszych właściwościach.
      W przewidywanej przyszłości nie należy spodziewać się powstania żadnych urządzeń z tego typu materiałów. Uczeni z Cornell prowadzili swoje badania w temperaturze zaledwie 4 kelvinów. Teraz szukają materiałów, które mogą wykazywać pożądane właściwości w znacznie wyższych temperaturach.
    • przez KopalniaWiedzy.pl
      Profesor Shaul Yalovsky z Wydziału Biologii Molekularnej i Ekologii Roślin Uniwersytetu w Tel Awiwie zidentyfikował rodzaj "przełącznika", który mówi komórkom roślinnym kiedy mają rosnąć. Odkrycie to może znakomicie ułatwić walkę z nowotworami u ludzi.
      Naukowiec jest bowiem w stanie samodzielnie manipulować tym przełącznikiem i decydować o kształcie, wzroście komórek i tkanek oraz o ich odpowiedzi na infekcje wirusowe i bakteryjne.
      Wspomniany "przełącznik' to molekuła tłuszczu, która wpływa na pracę protein zwanych ROP. Zespół pracujący pod kierunkiem Yalovsky'ego i współpracujący z nimi profesor Yoav Henis i doktor Joel Hirsch ustalili, że wspomniana molekuła jest niezbędna dla aktywności ROP.
      Struktury bardzo podobne do ROP istnieją też w ciele ludzkim i są odpowiedzialne za włączanie procesu obumierania (apoptozy) w komórkach nowotworowych. Jest więc nadzieja, że wiedzę nabytą podczas badań "przełącznika" roślinnych ROP uda się wykorzystać do powstrzymywania wzrostu guzów nowotworowych.
      Profesor Yalovsky jest zdania, że uda się tak manipulować ludzkimi proteinami, że będzie można decydować o szybszym podziale komórek, co przyda się tam, gdzie konieczne jest leczenie ran, lub też o spowolnieniu lub zatrzymaniu podziału i tym samym zatrzymaniu np. wzrostu nowotworu.
      Naukowcy specjalizujący się w badaniu roślin wiedzą, że ROP łączą się z molekułą GTP, która następnie rozpada się, tworząc molekułę GDP. Gdy ROP jest połączony z GDP staje się nieaktywny. Profesor Yalovsky wyprodukował odpowiednio zmutowaną molekułę, która zapobiega łączeniu się ROP z GTP, tworząc w ten sposób inhibitor.
      Odkrycie izraelskich naukowców przyda się również w rolnictwie. Do roślin będzie można np. wprowadzić zmutowaną molekułę, by reagowały one tak, jakby były zagrożone przez patogeny. W ten sposób uruchomi się naturalne mechanizmy obronne roślin i zmniejszy zapotrzebowanie na środki chemiczne.
    • przez KopalniaWiedzy.pl
      Naukowcy z Yale University i badacze z Semiconductor Research Corp. (SRC) ogłosili, że pamięci ferroelektryczne lepiej nadają się do zastąpienia obecnych układów DRAM niż pamięci flash. Już przed kilkoma miesiącami zaprezentowali oni eksperymentalny ferroelektryczny tranzystor dla układów FeDRAM. Kolejne badania pozwoliły im stwierdzić, że przyszłością kości pamięci są ferroelektryki.
      Nasze pamięci są tak szybkie jak DRAM, jeśli nie szybsze, a jednocześnie mają rozmiary flash i lepiej od nich się skalują. Dla układów flash przekroczenie granicy 25 nanometrów będzie bardo trudne, jednak FeDRAM ma podobne możliwości skalowania jak technologia CMOS, która będzie działała przy rozmiarach mniejszych niż 10 nanometrów - mówi profesor Tso-Ping Ma z Yale.
      Dotychczas produkowane pamięci ferroelektryczne wykorzystują np. cyrkoniano-tytanian ołowiu, który pod wpływem prądu elektrycznego spontanicznie tworzy dipole. Jednak pamięci te należy zabezpieczyć przed depolaryzacją, która może zajść pod wpływem obwodów elektrycznych w układzie pamięci. Zabezpiecza się je umieszczając materiał ferroelektryczny pomiędzy dwoma metalami. Jednak cała konstrukcja jest duża, wymaga użycia sporych komórek pamięci, a przez to jest niekonkurencyjna wobec układów flash. Tymczasem FeDRAM pozbawiona jest tej wady i korzysta z tego, co najlepsze w DRAM i flash.
      FeDRAM ma też wiele innych zalet. Przede wszystkim nie musi być tak często odświeżana. Tradycyjna pamięć DRAM wymaga odświeżania co kilka milisekund, FeDRAM można odświeżać 1000-krotnie rzadziej. Nowy rodzaj pamięci zużywa 20-krotnie mniej energii i, jako że jest ferroelektrykiem, ma bardzo wysoką stałą dielektryczną, wynoszącą co najmniej 100. Tradycyjne materiały high-k charakteryzują się stałą około 20. Ferroelektryki jest więc łatwiej skalować. Ponadto FeDRAM ma prostszą konstrukcję. Pamięć DRAM wymaga użycia kondensatora do przechowywania ładunku, w przypadku FeDRAM wystarczy sam trazystor z bramką z materiału ferroelektrycznego.
      Obecnie przeprowadzone testy dowodzą, że układ FeDRAM wytrzymuje bilion cykli zapisu/odczytu. Na razie nie wiadomo jeszcze, jak upływ czasu będzie wpływał na tego typu konstrukcje.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...