Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wystarczy zaledwie 20 lat życia, by w naczyniach krwionośnych niemal każdego mieszkańca krajów uprzemysłowionych pojawiły się blaszki miażdżycowe. Dlaczego więc do zawału serca i innych narządów dochodzi tylko u niektórych? Naukowcy z Columbia University twierdzą, iż znaleźli odpowiedź na to pytanie.

Blaszka miażdżycowa to patologiczna struktura powstająca w wyniku odkładania się różnych składników krwi, na czele z lipoproteinami (kompleksami białkowo-tłuszczowymi odpowiedzialnymi za transport lipidów). Z czasem organizm zaczyna reagować na jej obecność poprzez wywołanie stanu zapalnego, co objawia się m.in. napływem komórek odpornościowych zwanych makrofagami. Jak się okazuje, ich aktywność jest czynnikiem decydującym o tym, czy blaszka pozostanie na swoim miejscu, czy oderwie się i wywoła zawał.

Zespół dr. Iry Tabasa z Columbia University wykazał, ze procesem odpowiedzialnym za rozpad blaszki miażdżycowej jest tzw. stres retikulum endoplazmatycznego. Polega on na samobójczej śmierci (apoptozie) komórek poddanych nadmiernej ekspozycji na szkodliwe warunki panujące w ich otoczeniu. O ile w normalnej sytuacji jest on zjawiskiem pożądanym i pozwala na eliminację wadliwie działających komórek, o tyle w przypadku blaszki miażdżycowej jego efekty mogą być katastrofalne.

Nieustający stan zapalny zmusza makrofagi do podwyższonej aktywności, przez co są one narażone na nieustanny stres. Zwiększa to prawdopodobieństwo ich masowego umierania, przez co we wnętrzu blaszki może powstać tzw. rdzeń martwiczy. Jego obecność zaburza spójność struktury złogu, przez co może dojść do jego rozpadu.

Jak wykazały wcześniejsze badania, apoptoza komórek poddanych stresowi retikulum endoplazmatycznego jest zależna od białka zwanego CHOP. Powstało w ten sposób przypuszczenie, iż zablokowanie genu kodującego tę proteinę może doprowadzić do ustabilizowania blaszki miażdżycowej i zapobiec jej rozpadowi. 

Zaproponowaną hipotezę przeprowadzono na dwóch szczepach myszy podatnych na rozwój miażdżycy. Wyhodowano także zwierzęta należące do tych samych szczepów, lecz pozbawione genu kodującego CHOP. 

Badane zwierzęta karmiono przez 10 tygodni pokarmami o wysokiej zawartości tłuszczów. Wykonana po tym czasie sekcja zwłok wykazała, że myszy pozbawione sekwencji DNA odpowiedzialnej za syntezę CHOP znacznie lepiej znosiły niezdrową dietę. Patologiczne zmiany w budowie ich naczyń krwionośnych były średnio aż o 50% mniejsze, niż u zwierząt niemodyfikowanych genetycznie. Jednoznacznie wskazuje to na istotną rolę badanej proteiny w rozwoju miażdżycy oraz zawału.

Fakt, iż jesteśmy w stanie wyizolować pojedynczy gen, kodujący pojedyncze białko o tak potężnym wpływie na martwicę blaszki, był sporym zaskoczeniem, przyznaje dr Tabas. Badacz podkreśla jednocześnie, iż może to oznaczać przełom w podejściu do prewencji zaburzeń sercowo-naczyniowych. Zanim jednak będzie to możliwe, minie co najmniej kilka lat. Do tego czasu zalecamy znacznie prostsze metody, takie jak zwiększenie aktywności fizycznej czy zmianę diety.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Alkohol też chyba ma zbawienny wpływ na blaszki miażdżycowe - jeśli się nie mylę ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Finlandii i Wielkiej Brytanii przeprowadzili pionierskie badania, w wyniku których stwierdzili, że bezpośrednią przyczyną zawału mięśnia sercowego może być infekcja. Taki pogląd rzuca wyzwanie dotychczasowej wiedzy dotyczącej patologii tej choroby. Obecnie panuje przekonanie, że główną przyczyną zawału jest miażdżyca tętnic wieńcowych, powstająca w wyniku odkładania się cholesterolu i innych tłuszczów. Jeśli zaś potwierdziłoby się, że główną przyczyną jest infekcja, otworzyłoby to drogę do rozwoju nowych metod leczenia, być może nawet powstałyby szczepionki zapobiegające zawałom.
      Autorzy najnowszych badań zauważyli, że na odkładających się na tętnicy blaszkach miażdżycowych może przez lata tworzyć się bakteryjny biofilm. Uśpione bakterie w jego wnętrzu chronione są przed układem odpornościowym czy antybiotykami. Biofilm może zostać aktywowany przez infekcję wirusową czy inny impuls. Prowadzi to do proliferacji bakterii z biofilmu i pojawienia się reakcji zapalnej. Reakcja ta może spowodować pęknięcia włóknistej powierzchni blaszki, utworzenia się skrzepliny i zawału.
      Od dawna podejrzewano, że bakterie są zaangażowane w chorobę niedokrwienną serca, jednak brakowało na to dowodu. Podczas naszych badań odkryliśmy DNA licznych bakterii jamy ustnej wewnątrz blaszek miażdżycowych, mówi główny autor badań, profesor Pekka Karhunen z fińskiego Uniwersytetu w Tampere.
      Naukowcy zbadali blaszki miażdżycowe 121 osób, które zmarły na zawał serca i 96 osób, u których przeprowadzono endarterektomię, zabieg usunięcia blaszki miażdżycowej. Analizy wykazały, że najpowszechniej występującym rodzajem bakterii są paciorkowce (Streptoccocus). Ich DNA znaleziono w 42,1% zmarłych i 42,9% żywych pacjentów.
      Wnioski z badań potwierdzono obserwując, jak bakterie uwolnione z biofilmu, zostały rozpoznane przez układ odpornościowy, który doprowadził do stanu zapalnego i pęknięcia blaszki.
      Szczegóły zostały opublikowane w piśmie Journal of the American Heart Association.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Trinity College Dublin odkryli, że elektrostymulacja przeprogramowuje makrofagi tak, że zmniejsza to stan zapalny i przyspiesza gojenie się ran oraz zdrowienie podczas chorób. Odpowiednie wykorzystanie prądu elektrycznego może więc stać się interesującą nową metodą terapii. Badania naukowców z Dublina opierają się na wcześniejszych spostrzeżeniach. Wiadomo bowiem, że stymulacja elektryczna może regulować funkcjonowanie komórek w czasie zdrowienia i regeneracji. Dotychczas jednak nasza wiedza o skutkach elektrycznej stymulacji makrofagów była bardzo ograniczona.
      Od dawna wiadomo, jak ważną rolę odgrywa układ odpornościowy w leczeniu i gojeniu, a kluczowym jego elementem jest działalność makrofagów. Dlatego też wielu naukowców pracuje nad sposobami programowania makrofagów tak, by działały szybciej i bardziej efektywnie, a przy tym, by ich praca była związana z mniejsza liczbą skutków ubocznych, takich jak nadmierny stan zapalny.
      Uczeni z Trinity pracowali z makrofagami wyizolowanymi z krwi zdrowych osób. W ten sposób po raz pierwszy wykazali, że elektryczna stymulacja makrofagów zmniejsza stan zapalny, a jednocześnie zwiększa zdolność makrofagów do naprawiania tkanki. "Jednym z celów przyszłych badań powinno być sprawdzenie bardziej zaawansowanych sposobów stymulacji, by uzyskać bardziej precyzyjną kontrolę nad ich działaniem, długotrwałe zmniejszenie stanu zapalnego oraz sprawdzić nowe materiały, techniki i sposoby dostarczania pola elektrycznego", mówi profesor Michale Monaghan. "Nasze badania przyniosły obiecujące efekty in vitro i pokazują olbrzymi potencjał tej metody w leczeniu szerokiej gamy chorób zapalnych", dodaje.
      Szczegóły badań opublikowano w piśmie Cell Reports Physical Science.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Substancję będącą inhibitorem enzymu odpowiedzialnego za rozwój miażdżycy zidentyfikował zespół naukowy z udziałem Polaka – dr. hab. Michała Ponczka z Wydziału Biologii i Ochrony Środowiska UŁ.
      Konwertaza proproteinowa subtylizyna/kexin typu 9 (PCSK9) to enzym, który od dawna pozostaje jednym z kluczowych celów badań nad lekami zapobiegającymi miażdżycy. Jej związanie z receptorem lipoprotein o małej gęstości (LDLR) prowadzi bowiem do rozwoju tej choroby. Jeżeli udałoby się znaleźć cząsteczkę, która skutecznie hamuje PCSK9 – poprzez tworzenie z nią stabilnego kompleksu – możliwe byłoby zahamowanie postępu miażdżycy, która jest jedną z głównych przyczyn udaru mózgu i zawału serca.
      W artykule pt. „Finding inhibitors for PCSK9 using computational methods” opublikowanym na łamach prestiżowego pisma „PLOS ONE” grupa badawcza z udziałem dr. Ponczka opisała metodę identyfikowania potencjalnych inhibitorów PCSK-9 za pomocą zaawansowanych metod obliczeniowych opartych na bioinformatyce i cheminformatyce. Związki te mogłyby stać się w przyszłości nowymi lekami przeciwmiażdżycowymi.
      Mogłyby częściowo zastąpić znane od dawna statyny lub być stosowane razem z nimi, tak aby zapobiegać zatorom naczyń krwionośnych, prowadzącym do śmiertelnych udarów i zwałów – wyjaśnia dr Ponczek, cytowany w informacji prasowej z UŁ.
      Wraz z naukowcami z Pakistanu (Lahore College for Women University) przyjrzał się on kilkunastu znanym lekom miażdżycowym: kaptoprylowi, zofenoprilowi, enalaprylowi, ramiprylowi, chinaprylowi, peryndoprylowi, lizynoprylowi, benazeprylowi, fosinoprilowi, cylazaprylowi, moeksiprylowi, trandolaprylowi, allicynie i teprotydowi. Stosując zaawansowane metody obliczeniowe naukowcy najpierw wyodrębnili grupę najlepszych kandydatów na leki (będącymi inhibitorami PCSK9), a następnie badając interakcje pomiędzy docelowym białkiem PCSK9 a zidentyfikowanymi obliczeniowo substancjami ustalili, które z nich mają największy potencjał do zostania skutecznym lekiem.
      Zastosowane przez nich tzw. dokowanie molekularne ujawniło ostatecznie 10 najlepszych kandydatów na inhibitory PCSK9. Niektóre z nich, takie jak (S)-kanadyna, hesperetyna lub labetalol, to substancje pochodzenia roślinnego.
      W ostatnim etapie badań naukowcy przeanalizowali je pod kątem właściwości farmakokinetycznych i biodostępności po podaniu doustnym. Okazało się, że kompleks (S)-kanadyna-PCSK9 jest najbardziej stabilny spośród wszystkich i to właśnie (S)-kanadyna może może być potencjalnym inhibitorem miażdżycy, który warto sprawdzić w przyszłych badaniach in vitro.
      Dzięki rosnącej mocy obliczeniowej komputerów dynamika molekularna stała się obecnie bardziej dostępną techniką obliczeniową, dzięki której możliwe jest symulowanie zachowania kompleksów białko-ligand oraz wpływu leków na makrocząsteczki biologiczne, które można obliczyć nawet na poziomie atomowym – podsumowują autorzy publikacji.
      Jak dodają, ich praca jest ważnym krokiem w kierunku opracowania nowych celów dla PCSK9, które mogłyby być podawane pacjentom jako prewencja lub terapia miażdżycy oraz innych chorób serca.
      Miażdżyca jest jedną z głównych przyczyn udaru mózgu i zawału serca na świecie. Jej rozwój jest bezpośrednio z podwyższeniem poziomu LDL oraz apolipoproteiny B (apoB), która jest odpowiedzialna jest za wiązanie lipidów. Zatrzymanie apoB w ścianach tętnic może inicjować stan zapalny, powstawanie złogów i tworzenie się blaszek miażdżycowych zmniejszających przepływ krwi do różnych narządów.
      PCSK9 jest zaś białkiem, które ma duże powinowactwo do receptora LDL (LDLR). Kiedy się z nim zwiąże, receptor nie przyłączać już samego LDL, co prowadzi do akumulacji cholesterolu i ryzyka rozwoju choroby wieńcowej. Dlatego też hamowanie PCSK9 i jego wiązania z LDLR jest kluczowe dla zapobiegania chorobie.
      Jak przypomina Centrum Promocji UŁ, miażdżyca jest jedną z najczęstszych przyczyn zgonów wśród mężczyzn i kobiet w wieku 45-59 lat, a w przypadku osób powyżej 60 roku życia nawet najczęstszą. Według raportu GUS „Trwanie życia w 2019 roku” w 2018 r. z jej powodu zmarło ponad 130 tys. Polaków.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Każdego roku zawał zabija niemal 10 mln, a udar ponad 6 mln ludzi na całym świecie. Wiadomo, że niedokrwienie wywołuje martwicę. Dopiero teraz okazało się jednak, czemu do tej martwicy dochodzi. Przyczyną jest nagromadzenie pewnego lipidu, który blokuje funkcje komórkowe.
      Szwajcarsko-francuski zespół naukowców stwierdził, że pod nieobecność tlenu dochodzi do akumulacji sfingolipidu: 1-deoksydihydroceramidu. Blokując jego syntezę u myszy z zawałem, naukowcy byli w stanie zmniejszyć uszkodzenia tkanki aż o 30%. Wyniki, które opisano na łamach Nature Metabolism, sugerują nowy model leczenia pacjentów z zawałem bądź udarem.
      Prof. Howard Riezman podkreśla, że nie wszystkie zwierzęta są tak wrażliwe na brak tlenu. Żółwie słodkowodne, a szczególnie żółw malowany (Chrysemys picta), są najlepiej tolerującymi anoksję, czyli warunki beztlenowe, kręgowcami oddychającymi powietrzem. Te zwierzęta mogą przeżyć eksperymentalne beztlenowe zanurzenia w temperaturze 3 stopni Celsjusza, które trwają nawet do 5 miesięcy. To dlatego szukaliśmy związku między brakiem tlenu i martwicą tkanek u ssaków.
      U nicieni Caenorhabditis elegans stwierdzono, że w warunkach beztlenowych gromadził się pewien lipid - wspomniany wcześniej 1-deoksydihydroksyceramid. Co istotne, przy zawale synteza deoksydihydroceramidu także wzrasta. [...] Zaobserwowaliśmy, że ten ceramid blokuje pewne kompleksy białkowe, a także wywołuje defekty cytoszkieletu i zaburza funkcję mitochondriów, powodując martwicę - dodaje Reizman.
      By potwierdzić, że to rzeczywiście deoksydihydroceramid odpowiada za martwicę, naukowcy z Genewy badali C. elegans z mutacją wywołującą rzadką chorobę - HSAN typu I. W ten sposób zwiększono poziom sfingolipidu. Skutkiem tego zabiegu była nadwrażliwość na brak tlenu.
      Zespół Michela Ovize'a z Uniwersytetu w Lyonie tuż przed zawałem wstrzykiwał myszom inhibitor syntezy ceramidów. Okazało się, że u gryzoni, którym podano zastrzyk z inhibitorem, martwica tkanki była o 30% mniejsza niż u zwierząt z grupy kontrolnej (po iniekcji bez inhibitora). Ten spadek jest imponujący - cieszy się Riezman.
      Wg akademików, szczególnie zachęcające są wyniki uzyskane podczas eksperymentów na myszach. Inhibitor syntezy ceramidów to dobrze znana substancja, którą testowano na modelach zwierzęcych. Niestety, hamuje syntezę wszystkich ceramidów - wyjaśnia Thomas Hannich. Z tego powodu naukowcy pracują teraz nad inhibitorem, który obiera na cel specyficznie deoksydihydroceramid. Powinien on mieć mniej skutków ubocznych i zachowywać normalne funkcje ceramidów w organizmie. To ogromnie ważne, gdyż jak wyjaśnia Hannich, ceramidy są absolutnie koniecznymi dla organizmu lipidami. Bez nich nie dałoby się realizować paru ważnych funkcji, np. nasza skóra mogłaby całkowicie wyschnąć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od dawna uważa się, że lipoproteina niskiej gęstości (LDL), główny transporter cholesterolu z wątroby do innych narządów, przyczynia się do miażdżycy. Ostatnie dowody sugerują jednak, że istotnymi graczami w tym procesie są również utlenione lipoproteiny o niskiej gęstości (ang. oxidised low density lipoproteins, oxLDL). By ocenić wkład LDL i oxLDL, Manuela Ayee oraz Irena Levitan z Uniwersytetu Illinois prowadziły eksperymenty na myszach i ludzkich komórkach śródbłonka.
      Amerykanki podawały myszom zwykłą karmę albo paszę wzorowaną na diecie zachodniej (o podobnej zawartości tłuszczu, białek i węglowodanów, co fast foody). Okazało się, że u gryzoni z 2. grupy szybko pojawiała się sztywność naczyń. Panie zmierzyły poziomy LDL i oxLDL u zwierząt, tak by dało się je odtworzyć w hodowlach komórkowych.
      W kolejnym etapie Ayee i Levitan zbadały napięcie błony komórkowej i sztywność cytoszkieletu za pomocą mikroskopu sił atomowych (AFM).
      Fizjologiczne poziomy zarówno LDL, jak i oxLDL powodowały pogrubienie błony oraz podwyższone napięcie (w porównaniu do hodowli bez dodanych lipoprotein). Gdy LDL i oxLDL stosowano łącznie, efekt był jeszcze silniejszy.
      Ku naszemu zaskoczeniu bardzo mała ilość oxLDL dramatycznie, na gorsze, zmieniała strukturę błony komórkowej - podkreśla Ayee. Uważamy, że zmiany na poziomie błony komórkowej [zaburzenia integralności śródbłonka] mogą zapoczątkować procesy związane z miażdżycą.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...