Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Cornell University stworzyli program, dzięki któremu komputer jest w stanie wykorzystać dane z obserwacji do stworzenia ogólnego prawa. To, co dotychczas było efektem pracy genialnych umysłów, stało się dostępne dla maszyn.

Przełomowa praca to dzieło profesora mechaniki i inżynierii kosmicznej Hoda Lipsona oraz doktoranta Michaela Schmidta, specjalizującego się w tworzeniu oprogramowania dla nauk biologicznych.

Program pozwala maszynie na analizowanie surowych niedokładnych danych i na odkrycie na ich podstawie praw rządzących naturą. Jednym z największych problemów współczesnej nauki jest analizowanie olbrzymich zbiorów danych i odkrywanie fundamentalnych praw tam, gdzie istnieją luki w teoriach ich dotyczących - mówi Lipson.

Oprogramowanie z Cornell University potrafi porównywać olbrzymią liczbę zmiennych, szukać w nich zależności i wyodrębniać pewne stałe zależności pomiędzy nimi. Tworzy na tej podstawie równania, których prawdziwość sprawdza w oparciu o dostępne informacje. Pozostawia następnie te równania, które najlepiej się sprawdzają, a inne odrzuca. Czynności te powtarza tak długo, aż w końcu znajdzie algorytm, który dokładnie opisuje zachowanie analizowanego przez siebie systemu. W ten sposób komputer znajduje stałe, które leżą u podstaw praw fizyki.

Po włączeniu maszyna Schmidta i Lipsona potrafiła jedynie określić jaka korelacja zachodzi pomiędzy obserwowanymi danymi i stwierdzić, które z nich są ważne, a które należy odrzucić. Korzystając z danych z oscylatora harmonicznego, wahadła i podwójnego wahadła, ale bez znajomości jakichkolwiek zasad fizyki, geometrii czy kinematyki, maszyna samodzielnie stworzyła prawa zachowania energii, pędu i drugą zasadę dynamiki.

Nie oznacza to, że naukowcy wkrótce staną się niepotrzebni, gdyż zastąpią ich komputery. Jednak nowe oprogramowanie umożliwi uczonym na znacznie szybsze wyodrębnienie istotnych danych i skupienie się właśnie na nich.

Warto wspomnieć, że uczeni z Cornell nie są jedynymi, którzy w ostatnim czasie przeprowadzili tak znaczące prace.

W Wielkiej Brytanii profesor Ross King z Aberystwyth University stworzył automatycznego naukowca imieniem Adam. Maszyna samodzielnie stworzyła hipotezę o istnieniu genów w drożdżach i o enzymach produkowanych przez te geny. Następnie zaprojektowała i przeprowadziła eksperyment, który miał potwierdzić hipotezę. Następnie, korzystając z wyników eksperymentu, Adam skorygował hipotezę i przeprowadził kolejne eksperymenty, na podstawie których opracował teorię. Naukowcy powtórzyli następnie eksperymenty Adama i okazało się, że robot doszedł do prawidłowych wniosków.

Share this post


Link to post
Share on other sites

Do czasu prawdziwych odkryć poczynionych przez powyższe(powyższych?) pozostanę sceptyczny w ocenie ich przydatności/funkcjonalności...

Share this post


Link to post
Share on other sites

Czyli program robi to, co obecnie magistranci - próbuje na podstawie mnóstwa danych znaleźć jakąś zależność statystyczną i na jej podstawie formułuje hipotezę  :)

Od czasu zaimplementowania prostych funkcji statystycznych w Excelu stało się to banalnie proste (chyba od 12 lat), ale nazywać zautomatyzowanie tego sztuczną inteligencją to przesada - samo napisanie programu, który zestawiał by zmienne ze sobą i szukał korelacji jest banalnie prosty, cała rzecz w mocach obliczeniowych. 10 lat temu, jak pracowałem na uczelni, uzyskanie wstępnej korelacji dla ok. 13 500 000 danych (przy 4 zmiennych) zajęło uczelnianemu serwerowi 7 godzin i poproszono mnie, by więcej go tak nie obciążać dla, jak to nazwano, eksperymentu programistycznego :;)

Share this post


Link to post
Share on other sites

Wydaje mi się, że nie jest to tak powierzchowne jak zakładasz i system ten nie tyle co wyszukuje korelację, by móc później transformować wejście->wyjście, ale potrafi ją także zidentyfikować i opisać. Sądzę, że do wybierania najtrafniejszych wzorów korelacji używa algorytmów ewolucyjnych. Bardzo ciekawy news.

Share this post


Link to post
Share on other sites

Poza tym sformułowanie prawa fizycznego wymaga wprowadzenia wielu dodatkowych korekt, m.in. zaokrągleń, odrzucenia wyników ekstremalnych itp. Mnie też wydaje się, że sprawa jest mocno skomplikowana.

Share this post


Link to post
Share on other sites

Ocena błędu grubego i metodyka jego usuwania (wraz z adnotacją w analizie wyników) jest ściśle matematycznie określone w Metrologii (dla danych ilościowych), i żadnych skomplikowanych programów do tego nie potrzeba. Inna rzecz to badania bazujące na danych jakościowych (ale Metodologia też jest nauką o ściśle określonych zasadach)- ale tu z kolei największym problemem jest przedstawienie danych za pomocą wartości liczbowych, bo tylko na takich jak na razie może operować jakikolwiek program.

Także znalezienie jakiegoś związku między zmiennymi na zasadzie olśnienia (słynne eureka Archimedesa) jest raczej w przypadku programu wykluczone.

Jak zwykł mawiać mój profesor, z komputera dostajesz to, co do niego włożysz, tyle że, gdy jesteś dobry w programowaniu, to w formie o wiele łatwiejszej do zrozumienia niż surowe dane.

PS. Opisać wyniki?? To znaczy zamienić dane ilościowe w jakościowe! Tylko po co? Ten kto to zaprogramował takiej zamiany do dalszej analizy nie potrzebuje, ten który nie zna algorytmu opisującego nie ma żadnych możliwości weryfikacji wyników - więc merytorycznie wypowiadać się nie powinien.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Sztuczna inteligencja w zastosowaniach wojskowych kojarzy się z autonomicznymi systemami broni czy androidami jak Terminator. Jednak amerykańscy eksperci twierdzą, że rzeczywistość będzie mniej spektakularna, a potęga militarnej SI nie będzie opierała się na zabójczych robotach.
      Pułkownik Brad Boyd, szef Joint Warfighting Operations w Joint Artificial Intelligence Center (JAIC) amerykańskiego Departamentu Obrony mówi, że znacznie ważniejsze od budowy najlepszej broni autonomicznej jest wykorzystanie sztucznej inteligencji do gromadzenia, analizowanie oraz przesyłania danych oraz ich wykorzystania podczas treningu nowych bądź udoskonalania starych systemów.
      Najbardziej intensywnie pracujemy nad infrastrukturą, bo to ona zdecyduje, kto za 20 lat wygra wojnę, powiedział Boyd podczas konferencji prasowej. I nie chodzi tu o to, kto będzie miał najlepsze algorytmy, one za 20 lat i tak będą przestarzałe. Chodzi o to, kto będzie dysponował najlepszą infrastrukturą bo z niej wciąż będziemy korzystali za 50 lat.
      W ubiegłym miesiącu JAIC przyznało firmie Deloitte Consulting kontrakt o wartości do 106 milionów dolarów. Za te pieniądze w ciągu czterech lat ma powstać specjalna platforma dla chmur obliczeniowych – Joint Common Foundation (JCF) – zaprojektowana pod kątem potrzeb Pentagonu. Zadaniem Deloitte Consulting jest znalezienie odpowiednich kontrahentów, którzy wykonają poszczególne elementy JCF.
      JCF będzie działała jak scentralizowany hub zawierający dane i narzędzia, dzięki którym kontrahenci Pentagonu będą tworzyli i testowali produkty na potrzeby amerykańskich sił zbrojnych. Zbudowana z myślą o współpracy z przemysłem platforma ma być pomyślana tak, by była możliwa jej integracja z innymi elementami, takimi jak np. chmura JEDI, którą kosztem 10 miliardów USD ma dla Pentagonu stworzyć Microsoft.
      Umieszczenie wszystkich danych i narzędzi w jednym wspólnym repozytorium, jakim ma być JCF, ułatwi tworzenie i testowanie nowych algorytmów. SI ma kolosalny apetyt na dane. Właściwie nie ma momentu, w którym można powiedzieć, że algorytm SI został ukończony. On jest ciągle udoskonalany i testowany, mówi Nand Mulchandani, p.o. dyrektora JAIC. Również wdrożenie algorytmu nie jest łatwe, gdyż jego wydajność i możliwości mogą zależeć od lokalizacji geograficznej, w której jest wdrażany. Nie możesz wdrożyć algorytmu w jednej części świata i oczekiwać, że będzie działał w innej części. Trzeba mu zapewnić dostęp do lokalnych danych, by przystosować się do specyficznej lokalizacji czy zadań. Mulchandani nazywa ten proces cyklem ponownego treningu i stwierdza to coś, w czym musimy być naprawdę dobrzy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeden z najlepszych amerykańskich pilotów myśliwców przegrał 5:0 w serii symulowanych walk powietrznych ze sztuczną inteligencją. O pilocie, który zmierzył się z SI wiemy tylko, że jego znak wywoławczy to „Banger” i ukończył on kurs instruktorski obsługi broni pokładowej, do którego dopuszczani są wyłącznie najlepsi piloci. Jego pogromca, SI autorstwa niewielkiej firmy Heron Systems, pokonał wcześniej kilka innych systemów sztucznej inteligencji.
      Symulowane walki odbywały sie w ramach prowadzonego przez DARPA (Agencja Badawcza Zaawansowanych Systemów Obronnych) programu AlphaDogfight Trials. Program składał się z czterech etapów. W pierwszym z nich osiem algorytmów SI kontrolujących myśliwiec F-16 zmierzyło się z pięcioma algorytmami stworzonymi przez naukowców z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa. W drugim etapie osiem wspomnianych algorytmów – autorstwa Aurora Flight Sciences, EpiSys Science, Georgia Tech Research Institute, Heron Systems, Lockheed Martin, Perspecta Labs, PhysicsAI i SoarTech – starło się każdy z każdym. Na tej podstawie wyłoniono cztery najlepsze algorytmy, które zmierzyły się o prawo do walki z ludzkim przeciwnikiem. W półfinale algorytm Heron Systems pokonał sztuczną inteligencję twórcy F-16, firmy Lockheed Martin.
      Tym samym SI Heron System zakwalifikował się do walki z jednym z czołowych pilotów US Air Force. Rozegrano 5 symulowanych pojedynków. Łącznie trwały one nie dłużej niż 2 minuty. Człowiek przegrał wszystkie.
      W czasie pojedynków pilot miał hełm, który dawał mu taki sam widok, jak podczas prawdziwej walki. Symulowano samoloty poruszające się z prędkością ponad 800 km/h i przeciążenia dochodzące do 9G. Każdy z wirtualnych samolotów był uzbrojony w laser, który symulował broń pokładową.
      Chociaż SI odniosła miażdżące zwycięstwo, eksperci mówią, że niekoniecznie stałoby się tak w rzeczywistej walce. Warunki eksperymentu były bowiem ściśle kontrolowane. Pułkownik Daniel Javorsek, który nadzoruje w DARPA projekt rozwojów SI pilotujących samoloty stwierdził: My piloci, nigdy nie wierzymy do końca samym symulacjom i modelom komputerowym.
      Jednym z celów prowadzenia tego typu badań jest rozwój systemów sztucznej inteligencji, które będą wspomagały pilotów w walce. Program komputerowy potrafi bowiem znacznie szybciej niż człowiek zareagować na manewry przeciwnika. Systemy SI mogą też zwiększyć możliwości wojskowych dronów, które wciąż wymagają zdalnego pilotażu.
      Jak zauważyli specjaliści, jednym z elementów, który zapewnił SI Heron Systems zwycięstwo, była umiejętność lepszego celowania podczas szybko odbywającego się pojedynku. Jednak nie tylko. Jak przyznał „Banger” system był trudnym przeciwnikiem. Standardowe manewry, jakie wykorzystują piloci myśliwców, nie działały. Pilot zauważył, że SI potrafiła znacznie łatwiej usiąść mu na ogonie, niż jest to w stanie wykonać ludzki przeciwnik.
      Przed czterema laty sensacją było doniesienie, że algorytm sztucznej inteligencji pokonał doświadczonego pilota i wykładowcę taktyki walki myśliwców, pułkownika Lee.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Chin zaprezentowali wersję gry go opierającą się na mechanice kwantowej. W swojej symulacji naukowcy wykorzystali splątane fotony do ustawiania kamieni na planszy, zwiększając w ten sposób trudność gry. Ich technologia może posłużyć jako pole testowe dla sztucznej inteligencji.
      Wielkim wydarzeniem końca XX wieku było pokonanie arcymistrza szachowego Garry'ego Kasparowa przez superkomputer Deep Blue. Jednak go stanowiło znacznie trudniejsze wyzwanie. Ta gra o bardzo prostych zasadach posiada bowiem więcej kombinacji niż szachy. Jednak 20 lat później, w 2016 roku dowiedzieliśmy się, że SI pokonała mistrza go.
      Jednak szachy i go to gry o tyle łatwe dla komputerów, że na bieżąco znany jest stan rozgrywki. Nie ma tutaj ukrytych elementów. Wiemy co znajduje się na planszy i co znajduje się poza nią. Zupełnie inne wyzwanie stanowią takie gry jak np. poker czy mahjong, gdzie dochodzi element losowy, nieznajomość aktualnego stanu rozgrywki – nie wiemy bowiem, co przeciwnik ma w ręku – czy też w końcu blef. Także i tutaj maszyny radzą sobie lepiej. Przed rokiem informowaliśmy, że sztuczna inteligencja wygrała w wieloosobowym pokerze.
      Xian-Min Jin z Szanghajskiego Uniwersytetu Jiao Tong i jego koledzy postanowili dodać element niepewności do go. Wprowadzili więc doń mechanikę kwantową. „Kwantowe go” zostało po raz pierwszy zaproponowane w 2016 roku przez fizyka Andre Ranchina do celów edukacyjnych. Chińczycy wykorzystali tę propozycję do stworzenia systemu, który ma podnosić poprzeczkę sztucznej inteligencji wyspecjalizowanej w grach.
      W standardowej wersji go mamy planszę z 19 liniami poziomymi i 19 pionowymi. Na przecięciach linii gracze na przemian układają swoje kamienie, starając się ograniczyć nimi jak największy obszar planszy. W kwantowej wersji go ustawiana jest natomiast para splątanych kamieni. Oba kamienie pozostają na planszy dopóty, dopóki nie zetkną się z kamieniem z sąsiadującego pola. Wówczas dochodzi do „pomiaru”, superpozycja kamieni zostaje zniszczona i na planszy pozostaje tylko jeden kamień, a nie splątana para.
      W go gracz może zbić kamienie przeciwnika wówczas, gdy ustawi swoje kamienie na wszystkich sąsiadujących z przeciwnikiem polach. Jednak by do takiej sytuacji doszło w „kwantowym go” wszystkie otoczone kamienie przeciwnika muszą być kamieniami klasycznymi, żaden z nich nie może pozostawać w superpozycji z innym kamieniem na planszy. Jednak gracze nie wiedzą, który z kamieni w jakim stanie się znajduje, dopóki nie dokonają pomiaru.
      Jin i jego koledzy wyjaśniają, że ich symulacja pozwala na dostrojenie procesu pomiaru poprzez manipulacje splątaniem. Jeśli kamienie w danej parze są splątane w sposób maksymalny, to wynik pomiaru będzie całkowicie przypadkowy, nie potrafimy przewidzieć, który z kamieni po pomiarze pozostanie na planszy. Jeśli jednak splątanie będzie mniej doskonałe, jeden z kamieni będzie miał większą szansę na pozostanie na planszy. To prawdopodobieństwo będzie znane tylko temu graczowi, do którego kamień należy. Gra traci w tym momencie swoją całkowitą nieprzewidywalność, jednak pozostaje w niej duży element niedoskonałej informacji.
      Chińczycy przekuli teorię na praktykę tworząc pary splątanych fotonów, które były wysyłane do rozdzielacza wiązki, a wynik takiego działania był mierzony za pomocą czterech wykrywaczy pojedynczych fotonów. Jeden zestaw wyników reprezentował „0” a inny „1”. W ten sposób oceniano prawdopodobieństwo zniknięcia jednej z części pary wirtualnych kamieni ustawianych na przypadkowo wybranych przecięciach linii przez internetowe boty.
      Poprzez ciągłe generowanie splątanych fotonów i przechowywaniu wyników pomiarów naukowcy zebrali w ciągu godziny około 100 milionów możliwych wyników zniknięcia stanu splątanego. Taka ilość danych pozwala na przeprowadzenie dowolnej rozgrywki w go. Uczeni, analizując rozkład zer i jedynek w czasie potwierdzili, że nie występuje znacząca korelacja pomiędzy następującymi po sobie danymi. Tym samym, dane są rzeczywiście rozłożone losowo.
      Jin mówi, że rzeczywista złożoność i poziom trudności kwantowego go pozostają kwestią otwartą. Jednak, zwiększając rozmiary wirtualnej planszy i włączając do tego splątanie, można – jego zdaniem – zwiększyć trudność samej gry do takiego stopnia, by dorównywała ona takim grom jak mahjong, gdzie większość informacji jest ukrytych. Dzięki temu kwantowe go może stać się obiecującą platformą do testowania nowych algorytmów sztucznej inteligencji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Autorzy badań opublikowanych na łamach PNAS ostrzegają, że nie można ufać technikom obrazowania medycznego rekonstruowanym za pomocą sztucznej inteligencji. Międzynarodowy zespół naukowy pracujący pod kierunkiem Andersa Hansena z Uniwersytetu w Cambridge stwierdził, że narzędzia do głębokiego uczenia się, które rekonstruują obrazy wysokiej jakości na podstawie szybkich skanów, tworzą liczne przekłamania i artefakty, które mogą wpływać na diagnozę.
      Jak niejednokrotnie informowaliśmy, systemy sztucznej inteligencji są już na tyle zaawansowane, że równie dobrze jak radiolodzy, a często i lepiej, potrafią opisywać zdjęcia RTG, obrazy tomografii komputerowej czy rezonansu magnetycznego. W związku z tym pojawił się pomysł, by SI zaprząc do rekonstrukcji obrazów.
      Pomysł polega na tym, by wykonywać obrazowanie o niższej rozdzielczości, czyli pobierać dane z mniejszej liczby punktów, a następnie, by wytrenowane systemy algorytmy sztucznej inteligencji rekonstruowały na tej postawie obraz o wysokiej rozdzielczości. W ten sposób można by zaoszczędzić czas i pieniądze potrzebny na wykonanie badania. Wykorzystywane tutaj algorytmy były trenowana na dużej bazie danych obrazów wysokiej jakości, co stanowi znaczne odejście od klasycznych technik rekonstrukcji bazujących na teoriach matematycznych.
      Okazuje się jednak, że takie systemy SI mają poważne problemy. Mogą one bowiem przegapić niewielkie zmiany strukturalne, takie jak małe guzy nowotworowe, podczas gdy niewielkie, niemal niewidoczne zakłócenia spowodowane np. poruszeniem się pacjenta, mogą zostać odtworzone jako poważne artefakty na obrazie wyjściowym.
      Zespół w skład którego weszli Vegard Antun z Uniwersytetu w Oslo, Francesco Renna z Uniwersytetu w Porto, Clarice Poon z Uniwersytetu w Bath, Ben Adcock z Simon Fraser University oraz wspomniany już Anders Hansen, przetestował sześć sieci neuronowych, wykorzystywanych do rekonstrukcji obrazów tomografii i rezonansu. Sieciom zaprezentowano dane odpowiadają trzem potencjalnym problemom, które mogą się pojawić: niewielkim zakłóceniom, niewielkim zmianom strukturalnym oraz zmianom w próbkowaniu w porównaniu z danymi, na których system był trenowany.
      Wykazaliśmy, że niewielkie zakłócenia, których nie widać gołym okiem, mogą nagle stać się poważnym artefaktem, który pojawia się na obrazie, albo coś zostaje przez nie usunięte. Dostajemy więc fałszywie pozytywne i fałszywie negatywne dane, wyjaśnia Hansen.
      Uczeni, chcą sprawdzić zdolność systemu do wykrycia niewielkich zmian, dodali do skanów niewielkie litery i symbole z kart do gry. Tylko jedna z sieci była w stanie je prawidłowo zrekonstruować. Pozostałe sieci albo pokazały w tym miejscu niewyraźny obraz, albo usunęły te dodatki.
      Okazało się też, że tylko jedna sieć neuronowa radziła sobie ze zwiększaniem tempa skanowania i tworzyła lepszej jakości obrazy niż wynikałoby to z otrzymanych przez nią danych wejściowych. Druga z sieci nie była w stanie poprawić jakości obrazów i pokazywała skany niskiej jakości, a trzy inne rekonstruowały obrazy w gorszej jakości niż otrzymały do obróbki. Ostatni z systemów nie pozwalał na zwiększenie szybkości skanowania.
      Hansen stwierdza też, że badacze muszą zacząć testować stabilność takich systemów. Wówczas przekonają się, że wiele takich systemów jest niestabilnych. Jednak największym problemem jest fakt, że nie potrafimy w sposób matematyczny zrozumieć, jak działają tego typu systemy. Są one dla nas tajemnicą. Jeśli ich porządnie nie przetestujemy, możemy otrzymać katastrofalnie złe wyniki.
      Na szczęście takie systemy nie są jeszcze wykorzystywane w praktyce klinicznej. Zespół Hansena stworzył odpowiednie testy do ich sprawdzenia. Uczeni mówią, że nie chcą, by takie systemy zostały dopuszczone do użycia jeśli nie przejdą szczegółowych testów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Microsoft zwolni kilkudziesięciu pracowników zatrudnionych na umowach-zleceniach. Stracą oni pracę na rzecz... sztucznej inteligencji, która będzie zajmowała się w portalu MSN publikowaniem najświeższych wiadomości. Umowy zostaną rozwiązane 30 czerwca. Pracownicy ci, 50 z USA i 27 z Wielkiej Brytanii, są obecnie odpowiedzialni za wybieranie, edytowanie i przygotowywanie newsow do publikacji.
      Przedstawiciele Microsoftu oświadczyli, że firma na bieżąco dokonuje zmian w sposobie prowadzeni biznesu. Dodali, że likwidacja stanowisk nie ma związku z pandemią.
      Nie od dzisiaj mówi się, że sztuczna inteligencja mogłaby wybierać gotowe informacje, a może nawet samodzielnie pisać własne krótkie teksty. Tutaj, prawdopodobnie po raz pierwszy w historii, mamy przykład dużego portalu internetowego, w którym ludzie tracą pracę przy redakcji tekstu i zostają zastąpieni automatem.
      Microsoft, kończąc współpracę z kilkudziesięcioma osobami i zastępując ich SI, chce z jednej strony przetestować możliwości sztucznej inteligencji na dużą skalę, z drugiej zaś liczy na obniżenie kosztów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...