Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Odtwarzanie uszkodzonych fragmentów mózgu z wykorzystaniem komórek macierzystych może być trudniejsze, niż sądzono - twierdzą badacze z MIT. Dowiedli oni, że rozwijające się wówczas neurony zaczynają otrzymywać sygnały znacznie wcześniej, niż są w stanie wysyłać własne.

Regeneracja tkanek z wykorzystaniem własnych komórek macierzystych pacjenta od dłuższego czasu była postrzegana jako możliwa metoda leczenia wielu schorzeń. W przypadku układu nerwowego terapia taka może być jednak znacznie utrudniona. Okazuje się bowiem, że integracja nowych komórek z istniejącą tkanką może zaburzać przepływ informacji w obrębie odtwarzanych fragmentów mózgu.

Carlos E. Lois, jeden z autorów odkrycia, porównuje rozbudowę uszkodzonego układu nerwowego do podłączania nowych komponentów do uruchomionego komputera: najprawdopodobniej oprogramowanie tego komputera zawiesi się z powodu nagłego dodania nowego sprzętu. Niestety, w przeciwieństwie do urządzeń elektronicznych całkowite wyłączenie mózgu nie jest możliwe, co znacznie utrudnia przeprowadzenie leczenia.

Mózg dorosłego człowieka wytwarza nowe neurony najprawdopodobniej tylko w dwóch miejscach. Są to: opuszka węchowa, związana z przewodnictwem bodźców zapachowych, oraz hipokamp - element odpowiedzialny za pamięć. Bardzo prawdopodobne, że zrozumienie ich fizjologii pozwoli na skuteczne i bezpieczne dodawanie nowych komórek nerwowych do istniejących sieci.

W swoich badaniach Lois był wspierany przez dr. Wolfganga Kelscha oraz magistrantkę Chia-Wei Lin. Naukowcy zaobserwowali, ze powstające z komórek macierzystych neurony rozwijają się w "niewygodny" z punktu widzenia terapii sposób: elementy odpowiedzialne za odbieranie informacji powstają w nich znacznie wcześniej, niż te umożliwiające wysyłanie własnych impulsów. Co więcej, gdy zdolność do nadawania sygnałów zostanie już wypracowana, rozsyłane porcje informacji początkowo nie są "dostrojone" do potrzeb otaczających neuronów. Powoduje to zakłócenie przepływu impulsów w obrębie danego fragmentu mózgu.

Autorzy publikacji twierdzą, że dokonane odkrycie wskazuje kierunek badań koniecznych dla ulepszenia metod terapeutycznej regeneracji układu nerwowego. Zdaniem Loisa, badania sugerują, że jakiekolwiek próby zastępowania [brakujących] neuronów z wykorzystaniem komórek macierzystych będzie najprawdopodobniej wymagało rozwiązania problemu związanego z faktem, iż podczas "okresu dostosowania" połączenia tworzone przez nowe neurony zaburzają funkcjonowanie dotychczasowych neuronów. Wygląda więc na to, że naukowcy pracujący nad tą niezwykle obiecującą techniką napotkali kolejne ciężkie wyzwanie. Miejmy nadzieję, że uda im się rozwiązać ten problem w możliwie krótkim czasie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wyjaśnia to poniekąd sprawę ograniczonej regeneratywności tkanki nerwowej. Zarazem jednak źle rokuje, bo dla rozwiązania problemu trzeb będzie przechytrzyć ewolucję, a to się udaje tylko doraźnie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

elementy odpowiedzialne za odbieranie informacji powstają w nich znacznie wcześniej, niż te umożliwiające wysyłanie własnych impulsów

Ale to właśnie chyba lepiej? Gdyby było odwrotnie, to nowe neurony generowałyby szum niezależny od otoczenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale to właśnie chyba lepiej? Gdyby było odwrotnie, to nowe neurony generowałyby szum niezależny od otoczenia.

W teorii tak. Praktyka pokazała, że to powoduje rozstrojenie całego układu, więc nie jest zbyt dobrze.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
      Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
      Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
      Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
      Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
      Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
      W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Palenie papierosów niesie ze sobą ryzyko rozwoju wielu, często śmiertelnych, chorób. Paradoksalnie jednak, jest też związane z mniejszym ryzykiem wystąpienia choroby Parkinsona. Badania niejednokrotnie wykazywały, że istnieje związek między paleniem tytoniu a zmniejszoną zapadalnością na tę chorobę neurodegeneracyjną. Dotychczas jednak nie wiedziano, dlaczego tak się dzieje. Na prawdopodobne wyjaśnienie wpadli naukowcy z Massachusetts General Hospital.
      Na łamach npj Parkinson's Disease poinformowali oni, że w badaniach laboratoryjnych niskie dawki tlenku węgla, porównywalne z dawkami wchłanianymi przez palaczy, chronią przed procesami neurodegeneracyjnymi oraz zapobiegają akumulowaniu się w mózgu kluczowej proteiny powiązanej z chorobą Parkinsona.
      Tlenek węgla jest on wytwarzany przez nasz organizm w reakcji na stres i w niskich dawkach ma działanie ochronne. Ponadto wiadomo, że zachodząca pod wpływem stresu nadmierna ekspresja enzymu oksygenazy hemowej 1 (HO-1), który wytwarza CO, chroni neurony dopaminergiczne w zwierzęcym modelu parkinsonizmu. A podczas niedawnych badań klinicznych stwierdzono, że nikotyna nie spowalnia postępów choroby Parkinsona. Dlatego też badacze skupili się właśnie na tlenku węgla.
      Stephen Gomperts, neurolog z Harvard Medical School, który pracuje w Massachusetts General Hospital, i jego zespół sprawdzili wpływ niskich dawek tlenku węgla na mysich modelach parkinsonizmu. Podawali zwierzętom tlenek węgla w postaci pigułek i stwierdzili, że chroniły one zwierzęta przed chorobą Parkinsona, w tym przed utratą neuronów dopaminergicznych i gromadzeniem się alfa-synukleiny.
      Badacze stwierdzili również, że poziom oksygenazy hemowej 1 w płynie mózgowo-rdzeniowym palaczy był wyższy, niż u osób niepalących. A w tkance mózgowej osób cierpiących na parkinsonizm poziom HO-1 był wyższy w neuronach, w których nie doszło do patologicznego nagromadzenia alfa-synukleiny.
      Odkrycie to sugeruje, że szlak molekularny aktywowany przez niskie dawki tlenku węgla mogą spowalniać i ograniczać rozwój choroby Parkinsona. Gomperts i jego zespół przygotowują się teraz do przeprowadzenia badań klinicznych na osobach cierpiących na chorobę Parkinsona. Będą im doustnie podawane niskie dawki tlenku węgla.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mózg chroniony jest przez czaszkę, opony mózgowo-rdzeniowe i barierę krew-mózg. Dlatego leczenie chorób go dotykających – jak udary czy choroba Alzheimera – nie jest łatwe. Jakiś czas temu naukowcy odkryli szlaki umożliwiające przemieszczanie się komórek układ odpornościowego ze szpiku kości czaszki do mózgu. Niemieccy naukowcy zauważyli, że komórki te przedostają się poza oponę twardą. Zaczęli więc zastanawiać się, czy kości czaszki zawierają jakieś szczególne komórki i molekuły, wyspecjalizowane do interakcji z mózgiem. Okazało się, że tak.
      Badania prowadził zespół profesora Alego Ertürka z Helmholtz Zentrum München we współpracy z naukowcami z Uniwersytetu Ludwika i Maksymiliana w Monachium oraz Uniwersytetu Technicznego w Monachium. Analizy RNA i białek zarówno w kościach mysich, jak i ludzkich, wykazały, że rzeczywiście kości czaszki są pod tym względem wyjątkowe. Zawierają unikatową populację neutrofili, odgrywających szczególną rolę w odpowiedzi immunologicznej. Odkrycie to ma olbrzymie znaczenie, gdyż wskazuje, że istnieje złożony system interakcji pomiędzy czaszką a mózgiem, mówi doktorant Ilgin Kolabas z Helmholtz München.
      To otwiera przed nami olbrzymie możliwości diagnostyczne i terapeutyczne, potencjalnie może zrewolucjonizować naszą wiedzę o chorobach neurologicznych. Ten przełom może doprowadzić do opracowania bardziej efektywnych sposobów monitorowania takich schorzeń jak udar czy choroba Alzheimer i, potencjalnie, pomóc w zapobieżeniu im poprzez wczesne wykrycie ich objawów, dodaje profesor Ertürk.
      Co więcej, badania techniką pozytonowej tomografii emisyjnej (PET) ujawniły, że sygnały z czaszki odpowiadają sygnałom z mózgu, a zmiany tych sygnałów odpowiadają postępom choroby Alzhaimera i udaru. To wskazuje na możliwość monitorowania stanu pacjenta za pomocą skanowania powierzchni jego głowy.
      Członkowie zespołu badawczego przewidują, że w przyszłości ich odkrycie przełoży się na opracowanie metod łatwego monitorowania stanu zdrowia mózgu oraz postępów chorób neurologicznych za pomocą prostych przenośnych urządzeń. Nie można wykluczyć, że dzięki niemu opracowane zostaną efektywne metody ich leczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uniwersytet im. Adama Mickiewicza w Poznaniu (UAM), Politechnika Poznańska oraz neurolodzy i psychiatrzy chcą opracować nową, bezinwazyjną metodę diagnozowania choroby Alzheimera na wczesnym etapie. Jak podkreślono na stronie UAM, w celu przeprowadzenia badań pilotażowych w projekcie naukowcy planują zgromadzić grupę około 50 osób zagrożonych rozwojem choroby, a także podobną grupę kontrolną.
      Choroba Alzheimer przez dekady może rozwijać się bez żadnych objawów. Tymczasem, jak w przypadku większości chorób, wczesne rozpoznanie ma olbrzymie znaczenie dla rokowań. Im zatem szybciej schorzenie zostanie zdiagnozowane, tym większa szansa na wyleczenie czy powstrzymanie dalszych postępów choroby. Wszyscy mamy nadzieję, że prędzej czy później będziemy dysponować skutecznym lekiem, jednak może się okazać, że największą barierą w jego zastosowaniu będzie dostęp do wczesnej diagnostyki - obecnie drogiej i trudno osiągalnej, mówi profesor Jędrzej Kociński z UAM.
      Naukowcy zapraszają więc do wzięcia udziału w bezpłatnych anonimowych badaniach wszystkich, którzy podejrzewają, że coś złego dzieje się z ich pamięcią, oraz osoby po 50. roku życia bez zaburzeń pamięci, ale w rodzinach których są lub były osoby z wczesnym otępieniem (czyli takie, u których rozwinęło się one przed 65. rokiem życia). W badaniach nie mogą wziąć udział osoby z wyraźnymi objawami otępienia, ani z już zdiagnozowaną chorobą Alzheimera. Szczegółowe informacje o projekcie znajdziemy na stronach Alzheimer Prediction Project, a chęć udziału w badaniu można zgłosić pisząc na adres kierownika projektu, doktora Marcina Górniaka, lekarz.marcin.gorniak[at]gmail.com.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Human Brain Mapping ukazał się artykuł, którego autorzy informują o zauważeniu międzypłciowych różnic w budowie mózgu u 5-letnich dzieci. Różnice zaobserwowane w istocie białej uwidaczniają różnice w rozwoju obu płci. Wyraźnie widoczny jest dymorfizm płciowy, a już w 5-letnim mózgu widać znaczne różnice w wielu regionach mózgu. Uzyskane wyniki zgadzają się z wynikami wcześniejszych badań, które wskazywały na szybszy rozwój mózgu kobiet.
      Podczas badań naukowcy wykorzystali technikę MRI obrazowania tensora dyfuzji. Polega ona na wykrywaniu mikroskopijnych ruchów dyfuzyjnych cząsteczek wody w przestrzeni zewnątrzkomórkowej tkanek. Jednym z głównych parametrów ocenianych tą metodą jest frakcjonowana anizotropia (FA). Jako, że tkanka nerwowa ośrodkowego układu nerwowego ma uporządkowaną budowę, oceniając współczynnik FA można zauważyć różnice w budowę istoty białej.
      Uczeni z Uniwersytetu w Turku porównali tą metodą budowę istoty białej u 166 zdrowych niemowląt w wieku 2–5 tygodni oraz 144 zdrowych dzieci w wieku od 5,1 do 5,8 lat. O ile u niemowląt nie zauważono istotnych statystycznie różnic pomiędzy płciami, to już u 5-latków wyraźnie widoczne były różnice międzypłciowe. U dziewczynek wartości FA dla całej istoty białej były wyższe we wszystkich regionach mózgu. Szczególnie zaś duża różnica występowała dla tylnych i bocznych obszarów oraz dla prawej półkuli.
      W naszej próbce typowo rozwijających się zdrowych 5-latków odkryliśmy szeroko zakrojone różnice międzypłciowe we frakcjonowanej anizotropii istoty białej. Dziewczynki miały wyższą wartość FA we wszystkich obszarach, a różnice te były istotne. [...] W naszych badaniach uwidoczniliśmy znacząco większe różnice niż wcześniej opisywane. Uzyskane przez nas wyniki pokazują dymorfizm płciowy w strukturze rozwijającego się 5-letniego mózgu, z wyraźnie wykrywalnymi zmianami w wielu regionach, czytamy na łamach Human Brain Mapping.
      Autorzy przypuszczają, że różnice te mogą wynikać z różnej dynamiki rozwoju mózgu u obu płci. Przypominają też, że z innych badań wynika, iż w późniejszym wieku dynamika ta jest wyższa u chłopców, przez co z wiekiem różnice się minimalizują. To zaś może wyjaśniać, dlaczego autorzy niektórych badań nie zauważali różnic w próbkach starszych osób.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...