Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Błyskawiczna reakcja na utratę wzroku

Rekomendowane odpowiedzi

Powszechnie wiadomo (i potwierdzają to badania), że u osób niewidomych pozostałe zmysły znacznie się wyostrzają. Dotychczas nie było jednak wiadomo, jak do tego dochodzi. Badacze z Beth Israel Deaconess Medical Center (BIDMC) uchylili rąbka tajemnicy dzięki interesującemu eksperymentowi.

Przeprowadzone doświadczenie wyjaśnia częściowo mechanizm kompensacji utraconej zdolności widzenia, lecz także dowodzi, że proces ten zachodzi bardzo szybko i jest odwracalny. Jak tłumaczy dr Alvaro Pascual-Leone, jeden z autorów badania, zdolność mózgu do reorganizacji jest znacznie większa, niż dotychczas sądzono. W naszym badaniu wykazaliśmy, że nawet u osoby dorosłej część mózgu odpowiedzialna za widzenie szybko dostosowuje się do przetwarzania [informacji o] dotyku w reakcji na całkowitą utratę zdolności widzenia. Szybkość i dynamiczna natura zaobserwowanych zmian sugeruje, że dzieje się to nie dzięki tworzeniu nowych połączeń nerwowych, które zajmowałoby znaczną ilość czasu, lecz dzięki prezentowaniu przez korę wzrokową nowych zdolności, które są ukryte, gdy wzrok jest sprawny.

W jednym z poprzednich badań naukowcy z BIDMC udowodnili, że osoby, którym zasłoni się oczy, już po pięciu dniach znacznie skuteczniej odczytują tekst zapisany alfabetem Braille'a. Wykonane później testy wykazały, że ich kora mózgowa przeszła znaczne zmiany. Badacze podążyli tym tropem i postanowili okreslić naturę tych zmian.

Do badania zaproszono 47 ochotników. Połowie z nich zasłonięto całkowicie oczy na pięć dni, pozostałym zaś - tylko na czas wykonywanych testów. Badani z obu grup uczyli się intensywnie (przez cztery do sześciu godzin dziennie) alfabetu Braille'a pod okiem instruktorów z Carroll Center for the Blind. Wykonano u nich także obrazowanie metodą funkcjonalnego rezonansu magnetycznego, pozwalające na określenie aktywności poszczególnych części mózgu.

Eksperyment wykazał, że osoby, którym zasłonięto oczy na pięć pełnych dni, nie tylko radzą sobie znacznie lepiej z odczytywaniem informacji zapisanych alfabetem Braille'a, lecz także ich mózgi przeszły znaczną reorganizację. Ich kora wzrokowa wykazywała ogromną aktywność w reakcji na dotyk. Także jej pobudzanie metodą przezczaszkowej stymulacji magnetycznej (ang. transcranial magnetic stimulation - TMS) znacznie zakłócało możliwość odbioru informacji związanych z dotykiem, co dodatkowo potwierdza zmiany zachodzące w układzie nerwowym.

Co ciekawe, już w 24 godziny po zakończeniu eksperymentu mózg uczestników eksperymentu wracał do normalnego trybu funkcjonowania. Jak ocenia dr Lotfi Merabet, główna autorka badania, ta wyjątkowo szybka adaptacja oznacza, że funkcje normalnie hamowane w obrębie kory wzrokowej zostają "wyciągnięte na powierzchnię", gdy zachodzi taka potrzeba. Dodaje: jesteśmy przekonani, że z czasem te funkcje zostają utrzymane i wzmocnione, prowadząc ostatecznie do trwałych zmian strukturalnych. Wykonany eksperyment podważa więc przekonanie niektórych badaczy o trwałym podziale funkcjonalnym mózgu na części o wyraźnej specjalizacji.

Wyniki badań opublikowano w najnowszym numerze czasopisma PLoS One.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Baardzo ciekawy eksperyment. Od razu przychodzi na myśl wykorzystanie takich zdolności reorganizacji mózgu przez różnego rodzaju służby. Jeśli z czasem uda się utrwalać takie zdolności i zapobiegać utracie innych, to będzie można "hodować" osoby o konkretnych właściwościach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dlaczego mnie też na myśl przyszło w pierwszym rzędzie wykorzystanie tych zdolności przez armię/służby specjalne, a nie przez lekarzy? To już mania prześladowcza, czy naprawdę żyjemy w aż tak chorym świecie? :/

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dlaczego mnie też na myśl przyszło w pierwszym rzędzie wykorzystanie tych zdolności przez armię/służby specjalne, a nie przez lekarzy? To już mania prześladowcza, czy naprawdę żyjemy w aż tak chorym świecie? :/

 

Po prostu ostatnie wydarzenia w Rosji i Gruzji przynoszą na myśli tylko takie wykorzystanie tych zdolności... Mnie kojarzy się film Daredevil...

 

Wydaje mi się że naukowcy mogą się mylić na temat tych "Ukrytych funkcji". Po prostu w naszej głowie znajdują się sieci neuronowe, które uczą się nowych funkcji, a nie że je umieją i gdy potrzeba to te funkcje są wyciągane na wierzch. Obecnie na TVN emitowany jest taki program "Dwie Twarze" i pokazuje on, że człowiek może się wielu rzeczy nauczyć i to w krótkim czasie. Przy czym w tym programie uczenie się nowego zawodu jest wymuszone, a w tym eksperymencie przymusowe. Przydałoby się tutaj przytoczyć historię pewnego nastolatka, który po utracie wzroku zdołał wyuczyć się zmysłu echolokacji...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Baardzo ciekawy eksperyment. Od razu przychodzi na myśl wykorzystanie takich zdolności reorganizacji mózgu przez różnego rodzaju służby. Jeśli z czasem uda się utrwalać takie zdolności i zapobiegać utracie innych, to będzie można "hodować" osoby o konkretnych właściwościach.

 

Ale to się właśnie zrobić nie da - rozwój jednych zdolności odbywa się kosztem osłabienia innych. Inaczej być nie może, mózg ma przecież ograniczoną pojemność i moze zbudować skończoną liczbę połączeń.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale można (w teorii, rzecz jasna) np. wyhodować żołnierza, który będzie miał perfekcyjny wzrok, za to pozbawimy go strachu nie pozbawiając jednocześnie umiejętności logicznego planowania. Podejrzewam, że Mariusz miał mniej więcej coś takiego na myśli.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Sprawa nie sięga tak głęboko, dotyczy tylko pól czuciowych kory i ich wzajemnej zamienności. Takie doświadczenia prowadzone są już od jakiegoś czasu, zresztą przecież istnieje bogaty materiał obserwacyjny, zebrany w trakcie badań chorych. Nic nie wskazuje na to, by tą drogą można było wzbogacić percepcje kosztem ośrodków podkorowych, międzymózgowia czy pnia.

Jeśli zaś chodzi o hodowlę żołnierzy, to prędzej w tej dziedzinie doczekamy się automatów. Lem bardzo ładnie to wywiódł w "Pokoju na Ziemi". No i taka tendencja daje się już zaobserwować, natomiast żołnierzy metodami neuralnymi produkuje się wyłącznie w filmach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niekoniecznie się zgodzę z tymi automatami. Jeżeli powstaną i będą masowo używne przez więcej, niż jedną armię świata, wówczas przy ewentualnym starciu automaty się wybiją, a potem i tak dojdzie do wojny między ludźmi. Przecież celem wojny nie jest przeważnie zniszczenie maszyn, tylko najczęściej zajęcie terenu. A teren to ludzie.

 

Z kolei obserwacja chorego mózgu wcale nie musi mieć przełożenia na funkcjonowanie tego prawidłowego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Mózg chroniony jest przez czaszkę, opony mózgowo-rdzeniowe i barierę krew-mózg. Dlatego leczenie chorób go dotykających – jak udary czy choroba Alzheimera – nie jest łatwe. Jakiś czas temu naukowcy odkryli szlaki umożliwiające przemieszczanie się komórek układ odpornościowego ze szpiku kości czaszki do mózgu. Niemieccy naukowcy zauważyli, że komórki te przedostają się poza oponę twardą. Zaczęli więc zastanawiać się, czy kości czaszki zawierają jakieś szczególne komórki i molekuły, wyspecjalizowane do interakcji z mózgiem. Okazało się, że tak.
      Badania prowadził zespół profesora Alego Ertürka z Helmholtz Zentrum München we współpracy z naukowcami z Uniwersytetu Ludwika i Maksymiliana w Monachium oraz Uniwersytetu Technicznego w Monachium. Analizy RNA i białek zarówno w kościach mysich, jak i ludzkich, wykazały, że rzeczywiście kości czaszki są pod tym względem wyjątkowe. Zawierają unikatową populację neutrofili, odgrywających szczególną rolę w odpowiedzi immunologicznej. Odkrycie to ma olbrzymie znaczenie, gdyż wskazuje, że istnieje złożony system interakcji pomiędzy czaszką a mózgiem, mówi doktorant Ilgin Kolabas z Helmholtz München.
      To otwiera przed nami olbrzymie możliwości diagnostyczne i terapeutyczne, potencjalnie może zrewolucjonizować naszą wiedzę o chorobach neurologicznych. Ten przełom może doprowadzić do opracowania bardziej efektywnych sposobów monitorowania takich schorzeń jak udar czy choroba Alzheimer i, potencjalnie, pomóc w zapobieżeniu im poprzez wczesne wykrycie ich objawów, dodaje profesor Ertürk.
      Co więcej, badania techniką pozytonowej tomografii emisyjnej (PET) ujawniły, że sygnały z czaszki odpowiadają sygnałom z mózgu, a zmiany tych sygnałów odpowiadają postępom choroby Alzhaimera i udaru. To wskazuje na możliwość monitorowania stanu pacjenta za pomocą skanowania powierzchni jego głowy.
      Członkowie zespołu badawczego przewidują, że w przyszłości ich odkrycie przełoży się na opracowanie metod łatwego monitorowania stanu zdrowia mózgu oraz postępów chorób neurologicznych za pomocą prostych przenośnych urządzeń. Nie można wykluczyć, że dzięki niemu opracowane zostaną efektywne metody ich leczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Human Brain Mapping ukazał się artykuł, którego autorzy informują o zauważeniu międzypłciowych różnic w budowie mózgu u 5-letnich dzieci. Różnice zaobserwowane w istocie białej uwidaczniają różnice w rozwoju obu płci. Wyraźnie widoczny jest dymorfizm płciowy, a już w 5-letnim mózgu widać znaczne różnice w wielu regionach mózgu. Uzyskane wyniki zgadzają się z wynikami wcześniejszych badań, które wskazywały na szybszy rozwój mózgu kobiet.
      Podczas badań naukowcy wykorzystali technikę MRI obrazowania tensora dyfuzji. Polega ona na wykrywaniu mikroskopijnych ruchów dyfuzyjnych cząsteczek wody w przestrzeni zewnątrzkomórkowej tkanek. Jednym z głównych parametrów ocenianych tą metodą jest frakcjonowana anizotropia (FA). Jako, że tkanka nerwowa ośrodkowego układu nerwowego ma uporządkowaną budowę, oceniając współczynnik FA można zauważyć różnice w budowę istoty białej.
      Uczeni z Uniwersytetu w Turku porównali tą metodą budowę istoty białej u 166 zdrowych niemowląt w wieku 2–5 tygodni oraz 144 zdrowych dzieci w wieku od 5,1 do 5,8 lat. O ile u niemowląt nie zauważono istotnych statystycznie różnic pomiędzy płciami, to już u 5-latków wyraźnie widoczne były różnice międzypłciowe. U dziewczynek wartości FA dla całej istoty białej były wyższe we wszystkich regionach mózgu. Szczególnie zaś duża różnica występowała dla tylnych i bocznych obszarów oraz dla prawej półkuli.
      W naszej próbce typowo rozwijających się zdrowych 5-latków odkryliśmy szeroko zakrojone różnice międzypłciowe we frakcjonowanej anizotropii istoty białej. Dziewczynki miały wyższą wartość FA we wszystkich obszarach, a różnice te były istotne. [...] W naszych badaniach uwidoczniliśmy znacząco większe różnice niż wcześniej opisywane. Uzyskane przez nas wyniki pokazują dymorfizm płciowy w strukturze rozwijającego się 5-letniego mózgu, z wyraźnie wykrywalnymi zmianami w wielu regionach, czytamy na łamach Human Brain Mapping.
      Autorzy przypuszczają, że różnice te mogą wynikać z różnej dynamiki rozwoju mózgu u obu płci. Przypominają też, że z innych badań wynika, iż w późniejszym wieku dynamika ta jest wyższa u chłopców, przez co z wiekiem różnice się minimalizują. To zaś może wyjaśniać, dlaczego autorzy niektórych badań nie zauważali różnic w próbkach starszych osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy ponad 100 lat temu z pewnej angielskiej kopalni węgla wydobyto skamieniałą rybią czaszkę, jej odkrywcy z pewnością nie zdawali sobie sprawy, jaką sensację skrywa ich znalezisko. Przeprowadzone niedawno badania tomograficzne wykazały, że w czaszce zwierzęcia sprzed 319 milionów lat zachował się mózg. To najstarszy znany nam dobrze zachowany mózg kręgowca.
      Organ ma około 2,5 cm długości. Widoczne są nerwy, dzięki czemu naukowcy mają szansę na lepsze poznanie wczesnej ewolucji centralnego układu nerwowego promieniopłetwych, największej współcześnie żyjącej gromady ryb, w skład której wchodzi około 30 000 gatunków. Odkrycie rzuca też światło na możliwość zachowania się tkanek miękkich kręgowców w skamieniałościach i pokazuje, że muzealne kolekcje mogą kryć liczne niespodzianki.
      Ryba, której mózg się zachował, to Coccocephalus wildi, wczesny przedstawiciel promieniopłetwych, który żył w estuariach żywiąc się niewielkimi skorupiakami, owadami i głowonogami. Tan konkretny osobnik miał 15-20 centymetrów długości. Naukowcy z Uniwersytetów w Birmingham i Michigan nie spodziewali się odkrycia. Badali czaszkę, a jako że jest to jedyna skamieniałość tego gatunku, posługiwali się wyłącznie metodami niedestrukcyjnymi. Na zdjęciach z tomografu zauważyli, że czaszka nie jest pusta.
      Niespodziewane odkrycie zachowanego w trzech wymiarach mózgu kręgowca daje nam niezwykłą okazję do zbadania anatomii i ewolucji promieniopłetwych, cieszy się doktor Sam Giles. To pokazuje, że ewolucja mózgu była bardziej złożona, niż możemy wnioskować wyłącznie na podstawie obecnie żyjących gatunków i pozwala nam lepiej zdefiniować sposób i czas ewolucji współczesnych ryb, dodaje uczona. Badania zostały opublikowane na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Medycyny Uniwersytetu w Pittsburghu są prawdopodobnie pierwszymi, którzy donoszą o istnieniu w ludzkim mózgu 12-godzinnego cyklu aktywności genetycznej. Co więcej, na podstawie pośmiertnych badań tkanki mózgowej stwierdzili, że niektóre elementy tego cyklu są nieobecne lub zburzone u osób cierpiących na schizofrenię.
      Niewiele wiemy o aktywności genetycznej ludzkiego mózgu w cyklach krótszych niż 24-godzinne. Od dawna zaś obserwujemy 12-godzinny cykl aktywności genetycznej u morskich, które muszą dostosować swoją aktywność do pływów, a ostatnie badania wskazują na istnienie takich cykli u wielu różnych gatunków, od nicienia C. elegans, poprzez myszy po pawiana oliwkowego.
      Wiele aspektów ludzkiego zachowania – wzorzec snu czy wydajność procesów poznawczych – oraz fizjologii – ciśnienie krwi, poziom hormonów czy temperatura ciała – również wykazują rytm 12-godzinny, stwierdzają autorzy badań. Niewiele jednak wiemy o tym rytmie, szczególnie w odniesieniu do mózgu.
      Na podstawie badań tkanki mózgowej naukowcy stwierdzili, że w mózgach osób bez zdiagnozowanych chorób układu nerwowego, w ich grzbietowo-bocznej korze przedczołowej, widoczne są dwa 12-godzinne cykle genetyczne. Zwiększona aktywność genów ma miejsce w godzinach około 9 i 21 oraz 3 i 15. W cyklu poranno-wieczornym dochodzi do zwiększonej aktywności genów związanych z funkcjonowaniem mitochondriów, a zatem z zapewnieniem mózgowi energii. Natomiast w godzinach popołudniowych i nocnych – czyli ok. 15:00 i 3:00 – zwiększała się aktywność genów powiązanych z tworzeniem połączeń między neuronami.
      O ile nam wiadomo, są to pierwsze badania wykazujące istnienie 12-godzinnych cykli w ekspresji genów w ludzkim mózgu. Rytmy te są powiązane z podstawowymi procesami komórkowymi. Jednak u osób ze schizofrenią zaobserwowaliśmy silną redukcję aktywności w tych cyklach, informują naukowcy. U cierpiących na schizofrenię cykl związany z rozwojem i podtrzymywaniem struktury neuronalnej w ogóle nie istniał, a cykl mitochondrialny nie miał swoich szczytów w godzinach porannych i wieczornych, gdy człowiek się budzi i kładzie spać, a był przesunięty.
      W tej chwili autorzy badań nie potrafią rozstrzygnąć, czy zaobserwowane zaburzenia cykli u osób ze schizofrenią są przyczyną ich choroby, czy też są spowodowane innymi czynnikami, jak np. zażywanie leków lub zaburzenia snu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Macierzyste komórki mózgu Homo sapiens popełniają mniej błędów niż komórki neandertalczyka w przekazywaniu chromosomów komórkom potomnym. To jeden z elementów, które mogą wyjaśniać, dlaczego obecnie jesteśmy jedynym gatunkiem rodzaju Homo, który chodzi po Ziemi.
      U ssaków wyższych, w tym u człowieka, kora nowa stanowi największą część kory mózgowej. Ta występująca wyłącznie u ssaków struktura jest odpowiedzialna m.in. za procesy poznawcze, jak pamięć, myślenie czy funkcje językowe. Naukowcy z Instytutu Molekularnej Biologii Komórki i Genetyki im. Maxa Plancka w Dreźnie oraz Instytutu Antropologii Ewolucyjnej im. Maxa Plancka w Lipsku donieśli, że u H. sapiens komórki macierzyste tej kory dłużej niż u neandertalczyków przygotowują chromosomy do podziału komórkowego. Dzięki tym dłuższym przygotowaniom w komórkach pojawia się mniej błędów. To zaś mogło mieć swoje konsekwencje dla rozwoju i funkcjonowania mózgu.
      Gdy w wyniku ewolucji naszych przodków na Ziemi pojawił się człowiek współczesny, neandertalczyk i denisowianin, u jednego z nich – człowieka współczesnego – doszło do zmian w około 100 aminokwasach. Nauka nie opisała jeszcze znaczenia większości tych zmian. Jednak sześć z nich zaszło w dwóch proteinach, które odgrywają kluczową rolę w rozkładzie chromosomów podczas podziału komórkowego.
      Naukowcy z Drezna i Lipska postanowili przyjrzeć się znaczeniu tych zmian dla rozwoju kory nowej. Wykorzystali w tym celu myszy, u których pozycja wspominanych aminokwasów jest identyczna, jak u neandertalczyków. Wprowadzili do organizmów zwierząt warianty aminokwasów spotykane u H. sapiens, tworząc w ten sposób model rozwoju mózgu współczesnego człowieka. Zauważyliśmy, że te trzy aminokwasy w dwóch proteinach wydłużyły metafazę, fazę podczas której chromosomy są przygotowywane do podziału komórki. W wyniku tego w komórkach potomnych występowało mniej błędów w chromosomach, podobnie jak u człowieka.
      Uczeni chcieli jednak się upewnić, czy zestaw aminokwasów, jaki mieli neandertalczycy, działa odwrotnie niż aminokwasów H. sapiens. Użyli więc organoidów ludzkiego mózgu. Organoidy to rodzaj wyhodowanych w laboratorium miniaturowych wersji organów, które chcielibyśmy badać. Do takich miniaturowych organów wprowadzili zrekonstruowane sekwencje aminokwasów neandertalczyków. Okazało się wówczas, że metafaza uległa skróceniu, a w chromosomach pojawiło się więcej błędów.
      Zdaniem głównego autora badań, Felipe Mory-Bermúdeza, eksperyment dowodzi, że te zmiany w aminokwasach występujących w proteinach KIF18a oraz KNL1 powodują, że u H. sapiens pojawia się mniej błędów podczas podziałek komórek mózgu niż u neandertalczyka czy szympansa. Musimy bowiem pamiętać, że błędy w rozkładzie chromosomów to zwykle nie jest dobra wiadomość. Obserwujemy je np. w takich schorzeniach jak trisomie czy nowotwory.
      Nasze badania pokazują, że niektóre aspekty ewolucji i funkcjonowania ludzkiego mózgu mogą być niezależne od jego wielkości. Rozmiar mózgu neandertalczyka był podobny do naszego. Odkrycie pokazuje też, że błędy w chromosomach mogły mieć większy wpływ na funkcjonowanie mózgu neandertalczyka niż na funkcjonowanie mózgu człowieka współczesnego, stwierdził nadzorujący badania Wieland Huttner. Svante Pääbo, który również nadzorował badania zauważa, że potrzebne są kolejne prace, które wykażą, czy mniejsza liczba błędów w naszych mózgach miała wpływ na ich funkcjonowanie.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...