
Nowa technika czyni skórę przezroczystą. Pomoże w obrazowaniu medycznym i leczeniu nowotworów
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Grzyb wiązany ze śmiercią osób rozkopujących starożytne groby, został zamieniony przez naukowców z University of Pennsylvania w silny lek przeciwnowotworowy. Uczeni wyizolowali z kropidlaka żółtego (Aspergillus flavus) nową klasę molekuł, zmodyfikowali je i przetestowali w laboratorium przeciwko komórkom białaczki. Okazało się, że nowy środek może rywalizować skutecznością z już zatwierdzonymi lekami przeciwnowotworowymi.
Grzyby dały nam penicylinę, a nasze badania pokazują, że w naturalnych produktach możemy znaleźć znacznie więcej leków, mówi profesor Sherry Gao i jedna z głównych autorek artykułu opublikowanego na łamach Nature Chemical Biology.
Zła sława A. flavus związana jest z grobem Tutanchamona. Niedługo po otwarciu zmarł m.in. jego odkrywca lord Carnarvon. Po latach naukowcy zaczęli spekulować, że zgodny spowodowane były właśnie przez kropidlaka. Do podobnych przypadków zgonów doszło i w Polsce. W ciągu 10 lat zmarło kilkanaście osób uczestniczących w otwarciu grobowca Kazimierza Jagiellończyka. Wśród znalezionych tam grzybów znajdował się kropidlak żółty.
Naukowcy wykorzystali związki należące do klasy RiPPs (ribosomally synthesized and post-translationally modified peptides). Są one syntetyzowane przez rybosomy jako prekursory białkowe, a po translacji są modyfikowane enzymatycznie. RiPPs mają często bardzo silne działanie biologiczne.
Dotychczas znamy wiele RiPPs wytwarzanych przez bakterie, ale niewiele wytwarzanych przez grzyby. Przyczyną takiego stanu rzeczy jest, przynajmniej częściowo, fakt, że naukowcy źle identyfikowali grzybowe RiPPs, biorąc je za peptydy niesyntetyzowane przez rybosomy i słabo rozumieli, jak RiPPs są wytwarzane przez grzyby. Główna autorka artykułu, doktor Qiuyue Nie, mówi, że oczyszczenie tych związków jest trudne, a ich synteza jest skomplikowana. Jednak to właśnie ta cecha nadaje im wyjątkowe właściwości.
Najpierw naukowcy przeanalizowali dziesiątki przedstawicieli rodzaju Aspergillus i stwierdzili, że kropidlak żółty jet dobrym kandydatem do dalszych badań. Uzyskali z niego cztery różne, nieznane wcześniej, RiPPs, które zbiorczo nazwali asperigimycynami. Nawet bez żadnych modyfikacji okazało się, że dwa z tych środków silnie działają na komórki białaczki. Trzeci z nowo odkrytych RiPPs, po dodaniu lipidu, równie silnie oddziaływał na komórki nowotworu, co arabinozyd cytozyny (w Polsce sprzedawany jako Cytosar, Alexan) oraz danorubicyna.
Po kolejnych analizach naukowcy doszli do wniosku, że asperigimycyny prawdopodobnie działają dzięki zaburzeniu procesu podziału komórkowego. Komórki nowotworowe dzielą się w sposób niekontrolowany. Te środki blokują tworzenie się mikrotubuli, które odgrywają ważną rolę w podziale komórkowym.
Badane molekuły nie miały żadnego wpływu na komórki nowotworu piersi, płuc czy wątroby, ani na wiele grzybów czy bakterii, co wskazuje, że asperigimycyny działają tylko na specyficzne komórki, a to niezwykle ważna i pożądana cecha środków, które mogą stać się lekami.
Źródło: A class of benzofuranoindoline-bearing heptacyclic fungal RiPPs with anticancer activities, https://www.nature.com/articles/s41589-025-01946-9
« powrót do artykułu -
przez KopalniaWiedzy.pl
Współpraca naukowców z Politechniki Federalnej w Zurychu i Federalnego Instytutu Badań i Technologii Materiałów (Empa) zaowocowała stworzeniem nowej matrycy światłoczułej wykonanej z perowskitów. Zapewnią ona lepszą reprodukcję kolorów i mniej błędów obrazu przy gorszych warunkach oświetleniowych. Jednocześnie pozwala na reprodukcję obrazów w znacznie wyższej rozdzielczości niż matryce z krzemu. Perowskitowa matryca może być szczególnie przydatna w obrazowaniu medycznym i automatycznym monitoringu.
Matryce światłoczułe znajdziemy obecnie w każdym smartfonie i cyfrowym aparacie fotograficznym. Rozpoznają kolory podobnie, jak nasze oczy. Odbierają kolory czerwony, zielony i niebieski. Czujniki takie wykonane są z krzemu, który absorbuje całe spektrum światła widzialnego. Żeby spowodować, by odbierały konkretne długości fali, stosuje się filtry. Piksele odpowiedzialne za odbieranie koloru czerwonego korzystają z filtrów, które nie przepuszczają niebieskiego i zielonego, itp. Zatem każdy piksel krzemowej matrycy odbiera około 1/3 zakresu światła widzialnego.
Uczeni z ETH Zurich i Empa, pracujący pod kierunkiem Maksyma Kovalenko, przez niemal dekadę pracowali nad matrycami korzystającymi z perowskitów. Właśnie poinformowali na łamach Nature, że ich matryca działa.
Nowa matrycę stworzono z perowskitu ołowiowo-halogenkowego. W przeciwieństwie do krzemu jest on bardzo łatwy w przetwarzaniu, a jego właściwości można precyzyjnie dobierać, zmieniając skład chemiczny. Jeśli zawiera nieco więcej jonów jodu, absorbuje światło czerwone, gdy dodamy bromu materiał absorbuje kolor zielony, a chlor odpowiada za kolor niebieski. Nie trzeba przy tym stosować żadnych filtrów. Co więcej, poszczególne warstwy są przezroczyste dla kolorów, które nie są dla nich przeznaczone. A to oznacza, że piksele odpowiedzialne za czerwony, zielony i niebieski mogą znajdować się jeden na drugim. W krzemowych matrycach muszą znajdować się obok siebie.
Dzięki możliwości układania warstw pikseli kolorów na sobie perowskitowy czujnik może, co najmniej w teorii, przechwycić trzykrotnie więcej światła niż matryca krzemowa i zapewnia trzykrotnie większa rozdzielczość na tej samej powierzchni. To zresztą zespół Kovalenki udowodnił kilka lat temu, prezentując w laboratorium działające duże piksele o wymiarach sięgających milimetra.
Teraz zaś, po raz pierwszy, uczeni zbudowali działające perowskitowe matryce światłoczułe. Rozwinęliśmy technologię z dużego urządzenia demonstracyjnego, do matrycy, której rozmiary pozwalają zastosować ją w praktyce. Pierwszy tranzystor był wielkim kawałkiem germanu z licznymi połączeniami. Teraz, 60 lat później, rozmiary tranzystorów liczymy w nanometrach, mówi współautor badań, Sergii Yakunin.
Perowskitowe matryce znajdują się na wczesnym etapie rozwoju. Jednak dwa zaprezentowane prototypy dowodzą, że można je miniaturyzować za pomocą powszechnie używanych metod technologii cienkowarstwowej. Twórcy matryc przeprowadzili liczne eksperymenty, w czasie których wykazali, że są one bardziej czułe na światło, lepiej oddają kolory i zapewniają wyższą rozdzielczość niż matryce krzemowe. Sam fakt, że każdy z pikseli może przechwytywać pełne spektrum światła eliminuje niektóre zakłócenia obrazu, takie jak mora.
Perowskitowe matryce, dzięki możliwości bardzo precyzyjnego dobierania zakresu fali światła, którą pochłaniają, mogą szczególnie przydać się w obrazowaniu medycznym. Dzięki nim można bowiem zdefiniować bardzo wiele zakresów kolorów. W przypadku krzemu dla każdego koloru trzeba zastosować osobny filtr, co jest trudne i niepraktyczne nawet w przypadku niewielu barw.
Twórcy nowego czujnika skupiają się teraz na zmniejszeniu rozmiarów pojedynczego piksela. Obecnie ich piksele mają od 0,5 do 1 mmm długości. W komercyjnych matrycach ich wielkości są liczone w mikrometrach. Perowskity powinny pozwolić na stworzenie piksela mniejszego nawet niż piksele na krzemie, wyjaśnia Yakunin. Trzeba też dostosować całą elektronikę, za pomocą której połączona jest matryca. Obecnie wszelkie połączenia i techniki przetwarzania obrazu są zoptymalizowane pod kątem współpracy z krzemem. Szwajcarscy badacze są przekonani, że poradzą sobie z tymi wyzwaniami.
Źródło: Vertically stacked monolithic perovskite colour photodetectors, https://www.nature.com/articles/s41586-025-09062-3
« powrót do artykułu -
przez KopalniaWiedzy.pl
Amerykańscy naukowcy odtworzyli recepturę, a raczej receptury, błękitu egipskiego. Ten najstarszy syntetyczny pigment był niezwykle ceniony w świecie starożytnym. Był używany jako zamiennik kosztownych materiałów jak turkus czy lapis lazuli i używany przez tysiące lat wykorzystywano go do malowania drewna, kamienia czy kartonażu. Do epoki oświecenia wiedza o jego wytwarzaniu zaginęła.
W dokumentach, które przetrwały, nie znajdziemy dokładnego przepisu na jego wykonanie. Z pewnością jednak nie był to jeden przepis, którego trzymali się wszyscy starożytni producenci. Widzimy bowiem duże zróżnicowanie odcieni błękitu, które muszą wynikać z różnych składników, ich proporcji i metody wytwarzania.
W ostatnich latach zainteresowanie błękitem egipskim wzrosło. Ma on bowiem interesujące właściwości optyczne, magnetyczne i biologiczne, dzięki którym potencjalnie można go wykorzystać w nowoczesnych technologiach. Barwnik emituje na przykład światło w zakresie podczerwieni, dzięki czemu można go użyć chociażby do zabezpieczeń. Jego skład chemiczny jest zaś podobny do składu chemicznego wysokotemperaturowych nadprzewodników.
Smithsonian Institution i Carnegie Museum of Natural History poprosiły naukowców z Washington State University o pomoc w odtworzeniu błękitu egipskiego na potrzeby wystawy muzealnej. Uczeni postanowili wykorzystać okazję, by bliżej zająć się materiałem, który ostatnio cieszy się tak dużym zainteresowaniem.
Chemicy, inżynierowie, mineralodzy i egiptolodzy stworzyli 12 różnych przepisów na błękit, w skład których wchodził tlenek krzemu, miedź, wapń i węglan sodu. Mieszaniny podgrzewali w temperaturach do 1000 stopni Celsjusza od 1 do 11 godzin, uwzględniają możliwości techniczne, jakimi dysponowali starożytni rzemieślnicy. Po chłodzeniu próbek w różnym tempie, uzyskany materiał był badany za pomocą nowoczesną nowoczesnych technik analitycznych i porównywali swoje materiały z próbkami pobranymi z dwóch różnych starożytnych egipskich artefaktów.
Badacze zauważyli, że pigment jest w wysokim stopniu heterogeniczny, a duże różnice w odcieniu można uzyskać dzięki niewielkim różnicom w procesie wytwarzania. Najbardziej jednak zaskakujący był fakt, że najbardziej intensywny błękit uzyskiwano, gdy w całej mieszaninie niebieskie składniki stanowiły zaledwie około 50%. Nieważne, jaka była reszta składników. To nas naprawdę zaskoczyło. Okazało się, że każda cząstka pigmentu złożona była z całej gamy różnych składników, mówi główny autor badań, profesor John McCloy.
Źródło: Assessment of process variability and color in synthesized and ancient Egyptian blue pigments
« powrót do artykułu -
przez KopalniaWiedzy.pl
Majowie modyfikowali swój wygląd na wiele różnych sposobów. Wiemy o modyfikacjach kształtu czaszek i uzębienia, przebijaniu skóry i stosowaniu kolczyków czy zawieszek, skaryfikacjach i malowaniu ciała. Skóra człowieka mogla służyć jako płótno, na którym nanoszono ważne informacje społeczne czy dane o statusie konkretnej osoby. Modyfikacje takie mogą być tymczasowe (jak malunki czy piercing) lub stałe, jak skaryfikacja czy tatuaż
Wiemy, że Majowie tatuowali się. Robili tak z ważnych przyczyn społecznych oraz ceremonialnych. Jednak wiedza ta pochodzi z zapisków historycznych oraz klasycznej majańskiej ikonografii. Nie dysponujemy żadnym przykładem wytatuowanej skóry. W tamtejszym klimacie tak nietrwały materiał się nie zachowuje. Tym cenniejsze jest odkrycie dokonane przez badaczy z USA i Danii. Uczeni znaleźli w jaskini Actun Uayazba Kab w Belize dwa odłupki czertu, które na podstawie kształty, wzorca zużycia i odkrytych na nich pozostałości uznali za używane przez Majów narzędzia do tatuowania. Kontekst znaleziska wskazuje, że pochodzą one z okresu klasycznego (250–900).
Zdaniem naukowców odłupki służyły do punktowego przebijania skóry, by wprowadzić do niej barwnik. Punktowe przebijanie skóry polega na bezpośrednim wprowadzaniu pigmentu znajdującego się na czubku narzędzia. Była to najpopularniejsza na całym świecie metoda tatuowania przed rozpowszechnieniem się tatuowania za pomocą narzędzi elektrycznych.
Fakt, że oba odłupki znaleziono w jaskini wskazuje, że tatuowanie było aktem ceremonialnym lub narzędzia do tatuowania zostały złożone w jaskini w sposób ceremonialny. Jeśli nasza interpretacja jest właściwa, to akt ten może być powiązany z praktykami religijnymi dotyczącymi osób o szczególnym statusie społecznym oraz mocy nadprzyrodzonych w świecie podziemnym, stwierdzają naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Cancer Prevention Research ukazały się wyniki badań klinicznych, które wskazują, że orzechy włoskie działają przeciwzapalnie i przeciwnowotworowo. Naukowcy z Wydziału Medycyny University of Connecticut wykazali, że wytwarzanie w jelitach dużych ilości urolityny A ma pozytywny wpływ na obecność markerów stanu zapalnego we krwi, moczu i kale. Może też pozytywnie wpływać na komórki nowotworowe w polipach jelita grubego.
Podczas testów klinicznych prowadzonych na naszych pacjentach zaobserwowaliśmy, że elagotaniny obecne w orzechach włoskich mają właściwości przeciwzapalne i przeciwnowotworowe. Szczególnie ważna jest jest tutaj zamiana elagotanin w potężną przeciwzapalną urolitnę A przez bakterie jelit, donoszą autorzy badań, którzy pracowali pod kierunkiem doktora Daniela W. Rosenberga. Rosenberg jest specjalistą od biologii nowotworów i onkologii molekularnej. Od ponad 10 lat bada właściwości przeciwzapalne orzechów włoskich.
Teraz prowadzony przez niego zespół zauważył, że wysoki poziom urolityny A w jelitach – a związek ten jest produktem metabolizmu elagotanin przez mikrobiom jelit – powoduje spadek poziomu markerów stanu zapalnego.
W badaniach klinicznych wzięło udział 39 pacjentów w wieku 40–65 lat, z których każdy był narażony na zwiększone ryzyko nowotworu jelita grubego. Badanych poproszono, by przez tydzień unikali pożywienia i napojów zawierających elagotaniny, by sprowadzić ich poziom urolityny A do zera lub wartości bliskiej zeru. Następnie, w ramach ściśle kontrolowanej diety, pacjenci jedli między innymi orzechy włoskie. Po trzech tygodniach przeprowadzono u nich kolonoskopię o wysokiej rozdzielczości.
Jednym z kluczowych wyników badań było stwierdzenie istnienia korelacji pomiędzy poziomem urolityny A w moczu i poziomem peptydu YY w serum. Proteina ta jest wiązana z hamowaniem rozwoju nowotworu jelita grubego. Stwierdzono również, szczególnie u pacjentów otyłych, spadek poziomu licznych markerów stanu zapalnego, który był skorelowany z poziomem urolityny.
Naukowcy zbadali też komórki polipów jelita grubego, które zostały usunięte pacjentom pod koniec testów klinicznych. Okazało się, że zwiększony przez konsumpcję orzechów włoskich poziom urolityny A był bezpośrednio związany ze zmniejszonym poziomem różnych białek, które zwykle są obecne w polipach. W ten sposób po raz pierwszy wykazano, że orzechy włoskie mogą bezpośrednio wpływać na zdrowie jelita grubego.
Jakby jeszcze tego było mało, u pacjentów z największym poziomem urolityny A występował najniższy poziom wimentyny, białka powiązanego z zaawansowanym rakiem jelita grubego.
Urolityna A ma bardzo pozytywny wpływ na stan zapalny, a być może nawet zapobiega nowotworom. Nasze badania dowodzą, że dodanie orzechów włoskich do diety może zwiększyć poziom urolityny i jednocześnie znacząco zmniejszyć stan zapalny, szczególnie u otyłych pacjentów, mówi Rosenberg.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.