Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W Vera C. Rubin Observatory zainstalowano zwierciadło wtórne

Rekomendowane odpowiedzi

W Vera C. Rubin Observatory zakończono instalowanie zwierciadła wtórnego. Zamontowane na Simonyi Survey Telescope 3,5-metrowe zwierciadło jest pierwszym stałym elementem systemu optycznego teleskopu. W kolejce do montażu czekają zwierciadło główne o średnicy 8,4 metra oraz LSST Camera, największy na świecie aparat cyfrowy. Vera C. Rubin Observatory, które powstaje za pieniądze amerykańskiej Narodowej Fundacji Nauki (NSF) oraz Biura Nauki Departamentu Energii ma rozpocząć nową erę badań w astronomii naziemnej. Obserwatorium ma rozpocząć pracę już w przyszłym roku.

Zwierciadło zostało wyprodukowane przez firmę Corning Advanced Optics w 2009 roku. Najpierw trafiło na Uniwersytet Harvarda, gdzie było przez 5 lat przechowywane, a następnie jego polerowaniem i wykończeniem zajęła się firma L3Harris Technologies. Ma ona ponad 50-letnie doświadczenie w projektowaniu i budowaniu układów optycznych. Jej zadaniem było też zbudowanie stelaża, w którym lustro zostało zamontowane, całej elektroniki, czujników, systemu kontroli zwierciadła oraz systemu kontroli termicznej. Stelaż składa się ze sztywnej stalowej ramy oraz 78 siłowników, które wspierają lustro i będą kontrolowały jego kształt.
W 2018 roku wraz z komponentami potrzebnymi do montażu trafiło do Chile i było przechowywane w obserwatorium, nad którego budową wciąż trwały prace. Już na miejscu, w 2019 roku, pokryto je ochronną warstwą srebra, a na początku lipca bieżącego roku zamontowano w stelażu, wraz z którym przed kilkoma dniami zostało ostatecznie zainstalowane w teleskopie. To jedno z największych wypukłych luster w historii jest monolitem o grubości 10 centymetrów.

Operacja montażu nie była łatwa. Wykorzystano podczas niej specjalnie zaprojektowany podnośnik, który zmienił pozycję zwierciadła na pionową. W tym czasie musiał pracować system kontroli, który zapobiegał powstaniu niepotrzebnych naprężeń w zwierciadle. Po zamontowaniu podłączono elektronikę i uruchomiono oprogramowanie kontrolne. W najbliższym czasie zainstalowana zostanie Commissioning Camera. To mniejsza wersja LSST camera, której zadaniem będzie przeprowadzanie serii testów obu luster teleskopu. Na sierpień zaplanowano zaś instalację głównego zwierciadła. Przed końcem roku ma zostać ukończony montaż LSST Camera.

Vera C. Rubin Observatory wybudowano na Cerro Pachón w Chile. Tamtejszy teleskop będzie fotografował południową część nieboskłonu. Zobrazowanie całego widocznego nieba zajmie mu kilka nocy. Zadanie to będzie powtarzał przez 10 lat, tworząc w ten sposób obraz zmieniającego się wszechświata. Tę kampanię naukową nazwano Legacy Survey of Space and Time (LSST).

Wczesne prace nad projektem, zwanym wówczas Large-aperture Synoptic Survey Telescope (LSST) były finansowane z niewielkich grantów, a w 2008 roku pojawiły się większe pieniądze przekazane przez państwa Simonyi oraz Billa Gatesa. W 2010 roku podczas dekadalnego przeglądu projektów naukowych NSF uznała LSST za naziemny instrument naukowy o najwyższym projekcie i w 2014 roku organizacja uzyskała zezwolenie na sfinansowanie projektu do końca.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
19 godzin temu, KopalniaWiedzy.pl napisał:

Vera C. Rubin Observatory, które powstaje za pieniądze amerykańskiej Narodowej Fundacji Nauki (NSF) oraz Biura Nauki Departamentu Energii ma rozpocząć nową erę badań w astronomii naziemnej.

Zapominasz Mariusz o może mniejszym, ale swego czasu bardzo ISTOTNYM wkładzie: https://rubinobservatory.org/about/funding (choć na koniec wspominasz ;))

Cytat

Early development was funded by a number of small grants, with major contributions in January 2008 by software billionaires Charles and Lisa Simonyi and Bill Gates of $20- and $10 million respectively.[32][27] $7.5 million was included in the U.S. President's FY2013 NSF budget request.[33]

(https://en.wikipedia.org/wiki/Vera_C._Rubin_Observatory)
Od nazwiska Simonyi pochodzi zresztą nazwa samego teleskopu

Cytat

The Rubin Observatory will house the Simonyi Survey Telescope,[14] a wide-field reflecting telescope with an 8.4-meter primary mirror

(link jak wyżej). Nie będę wchodził oczywiście w porównywanie finansowania nauki, ale to ciekawy przykład - mamy w Polsce coś na taką miarę? ;)

"Vera C. Rubin Obserwatory" da się wreszcie zapisać bardziej po polsku - Obserwatorium Very Rubin, czy Obserwatorium Rubin (będzie dobrze, bo dla mnie artykuł niepotrzebnie ma zbyt wiele anglicyzmów). 

20 godzin temu, KopalniaWiedzy.pl napisał:

Na sierpień zaplanowano zaś instalację głównego zwierciadła.

Lustro 1 i lustro 3 to jednak jeden kawałek szkła :) To bardzo ciekawa konstrukcja. Dla precyzji zatem M1/M3, albo główne i ... (językoznawca by się przydał; chodzi o następne lustro po wtórnym - z trzeciorzędnym ani trzeciorzędowym się nie zgodzę ;)).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No właśnie widziałem, że 1 i 3 to jedno i to samo, ale wolałem się nie wgłębiać (nie wiem, czy bym dobrze zrozumiał konstrukcję, więc o głównym napisałem. Trzeciorzędowe nie brzmi tu dobrze. Może po prostu trzecie? Albo opisać jego funkcję (pomocnicze? korygujące? - czy czemu tam ma służyć).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
9 godzin temu, Mariusz Błoński napisał:

Może po prostu trzecie?

Tak, to dobry pomysł. Przy okazji nie jest to "jedno i to samo"*; trzecie po prostu zajmuje środek, a główne ma kształt pierścienia, przez co efektywna średnica teleskopu jest mniejsza niż 8,4 m i wynosi około 6,7 m. Zdecydowanie nie jest "pomocnicze", gdyż jest w torze optycznym, a zastosowano takie rozwiązanie by teleskop był "krótki". Dzięki temu można "szybko" nim obracać, a jego zadaniem jest właśnie zgrabnie popintalać po niebie (co cztery dni ma przemiatać cały dostępny nieboskłon). :)

* Widać to dobrze np. tu: https://rubin.canto.com/v/gallery/album/HDSNU?display=curatedView&viewIndex=2&column=image&id=aodm2ircf57879hf7vjkk8v02s

Dodatkowo krótki filmik z biegiem promieni (jak to działa): https://youtu.be/p6NSZynPJfA

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 godzin temu, Astro napisał:

trzecie po prostu zajmuje środek, a główne ma kształt pierścienia, przez co efektywna średnica teleskopu jest mniejsza niż 8,4 m i wynosi około 6,7 m. Zdecydowanie nie jest "pomocnicze", gdyż jest w torze optycznym, a zastosowano takie rozwiązanie by teleskop był "krótki".

Zastosowano takie rozwiązanie aby teleskop był wolny od aberracji optycznych - przy przeglądzie całego nieba nie można sobie pozwolić na to aby obraz daleko od centrum miał zniekształcenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Celowo uprościłem, bo temat jest trochę trudniejszy. Oczywiście, że ustrojstwa optyczne posiadają wady, które trzeba eliminować - dobre obiektywy fotograficzne mają nieprzypadkowo po kilkanaście soczewek, ale w astronomii więcej oznacza więcej straconych fotonów (zauważyłeś zapewne, że ten teleskop w torze optycznym ma i soczewki). Oczywiście, że tak szerokie pole widzenia stwarza wiele problemów i ten układ trzech luster jest anastygmatem, ale można by to rozwiązać inaczej. Pojedyncze lustro sferyczne (które najłatwiej wykonać) ma aberrację sferyczną, którą można różnie korygować, ale "najprostszym" rozwiązaniem jest zrobić np. lustro paraboliczne bez takiej wady. Ten teleskop nie będzie miał optyki adaptatywnej (dziwne jak na tak duży teleskop) z powodu właśnie sporego pola widzenia, choć aktywną jak najbardziej. Długo by tu jeszcze można pisać - etap projektowania kosztował sporo właśnie dlatego, że to nie było zaprojektowanie "trzech lusterek" - projekt musiał być całościowy, łącznie z projektem "aparatu", czasami ekspozycji, montażu itd., ale pewnie to znasz - najpierw założenia projektu + ograniczenia fizyczne, potem rwanie włosów z głowy (to niemożliwe! ;)).

Cytat

The Rubin Observatory 8.4-meter primary mirror is actually two mirrors in one—combining them on one surface reduces complexity and allows the telescope to be more compact, making it easier to rotate and settle quickly.

https://rubinobservatory.org/explore/technology/mirrors

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wystrzelenie i rozłożenie teleskopu kosmicznego to bardzo skomplikowana i kosztowna procedura, mówi Sebastian Rabien z Instytutu Fizyki Pozaziemskiej im. Maxa Plancka. Nowa metoda, tak bardzo różna od typowego produkowania i polerowania zwierciadła, może rozwiązać problemy z wagą i pakowaniem zwierciadła teleskopu, pozwalając na wysłanie w przestrzeń kosmiczną znacznie większych, a zatem i znacznie czulszych, teleskopów.
      Na łamach pisma Applied Optics Rabien pochwalił się właśnie opracowaniem wraz ze swoimi kolegami nowej metody produkcji parabolicznych membran, z których powstaje zwierciadło teleskopu. Stworzone przez grupę Rabiena prototypy mają do 30 centymetrów średnicy. Można je skalować do rozmiarów wymaganych dla teleskopu, który chcemy stworzyć. Membrany powstają metodą osadzania z fazy gazowej i są tworzone na obracającej się cieczy umieszczonej wewnątrz komory próżniowej. Naukowcy opracowali tez metodę, która – za pomocą ciepła – koryguje niedoskonałości takiego lustra już po tym, jak zostało rozwinięte.
      Chociaż nasza praca to tylko pokaz, że metoda działa, kładzie ona podstawy pod budowę wielkich tanich zwierciadeł. Mogą dzięki niej powstać lekkie zwierciadła o średnicy 15–20 metrów, dzięki którym teleskopy kosmiczne będą o rząd wielkości bardziej czułe od obecnie budowanych czy planowanych, wyjaśnia Rabien.
      Naukowiec wykorzystuje molekuły monomerów, które są osadzane z fazy gazowej, tworząc polimer. Zwykle wytwarza się tak np. powłoki chroniące elektronikę przed wpływem wilgoci. Teraz po raz pierwszy wykorzystano tę metodę do uzyskania parabolicznych membran o parametrach optycznych wymaganych przez teleskopy. Niezbędnym elementem całości jest wykorzystanie obracającego się pojemnika zawierającego niewielką ilość cieczy, która utworzy idealny paraboliczny kształt.
      Pojemnik ten to rodzaj formy, którą można skalować do odpowiednich rozmiarów. Gdy już uzyskamy w ten sposób warstwę polimeru odpowiedniej grubości, należy nałożyć nań metaliczną warstwę odbijającą. W ten sposób powstaje zwierciadło, które z łatwością można zwinąć, zapakować do rakiety nośnej i rozwinąć w przestrzeni kosmicznej. Problem jednak w tym, że byłoby niemal niemożliwością odzyskanie idealnego parabolicznego kształtu to rozwinięciu zwierciadła. Dlatego też powstał system kontroli, w którym kształt zwierciadła jest modyfikowany za pomocą ciepła generowanego przez oświetlanie poszczególnych części zwierciadła.
      W kolejnym etapie badań uczeni chcą stworzyć bardziej wyrafinowany system kontroli kształtu. Sprawdzą tez, jak duże zniekształcenia mogą być tolerowane. Mają też zamiar zbudować komorę o średnicy metra, by lepiej zbadać powierzchnię większych zwierciadeł oraz udoskonalić proces ich zwijania i rozwijania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Budowany od 7 lat największy aparat fotograficzny na świecie jest już niemal gotowy. Jeśli wszystko pójdzie zgodnie z planem, w maju 2023 roku aparat zostanie zabrany z clean roomu w SLAC National Accelerator Laboratory w Kalifornii i poleci do Chile, gdzie specjaliści zamontują go w budowanym właśnie Vera C. Rubin Observatory. Wszystkie elementy aparatu zostały już w pełni złożone, mówi inżynier Hannah Pollek.
      Aparat posiada największe na świecie soczewki o średnicy 157 cm. Będzie do nich trafiało światło odbijane od trzech luster. Teleskop Vera C. Rubin Observatory będzie jednorazowo obserwował nieboskłon o szerokości 3,5 stopnia, czyli siedmiokrotnie większej od Księżyca w pełni. Gigantyczny aparat wykona dwa 15-sekundowe ujęcia obserwowanego obszaru, a następnie teleskop zostanie przekierowany na inny obszar nieboskłonu. W ten sposób, całymi latami, nowoczesne obserwatorium astronomiczne będzie badało południowy nieboskłon i sfotografuje około 20 miliardów galaktyk w ciągu 10 lat. Każdej nocy dostarczy astronomom 1,5 TB danych.
      Badania te będą prowadzone za pomocą 3,2-gigapikselowego aparatu fotograficznego. To rozdzielczość tak duża, że pozwala na zarejestrowanie piłeczki golfowej z odległości 25 kilometrów.
      Płaszczyzna ogniskowa aparatu ma szerokość 60 centymetrów i składa się ze 189 czujników CCD o rozdzielczości 16 megapikseli każdy. CCD wraz z towarzyszącą im elektroniką zostały połączone w grupy po 9 CCD w każdej. Powstało w ten sposób 21 modułów, które wraz z 4 dodatkowymi modułami, które służą pozycjonowaniu aparatu, umieszczono na podstawie. Każdy z takich modułów kosztował około 3 milionów dolarów.
      Każdy z pikseli ma szerokość około 10 mikrometrów, a całość jest niezwykle płaska. Nierówności na całej płaszczyźnie ogniskowej nie przekraczają 1/10 grubości ludzkiego włosa. Dzięki tak małym pikselom i tak płaskiej powierzchni, możliwe jest wykonywanie zdjęć w niezwykle wysokiej rozdzielczości. W połączeniu z możliwościami lustra teleskopu Vera C. Rubin Observatory pozwoli na rejestrowanie obiektów, które są 100 milionów razy mniej jasne, niż minimalna jasność wymagana, by zauważyło je ludzkie oko. To właśnie te możliwości sprawiają, że środowisko naukowe z niecierpliwością czeka na uruchomienie nowego obserwatorium.
      Jednak aby osiągnąć tak imponującą czułość, czujniki rejestrujące światło muszą zostać schłodzone. Dlatego za obiektywem zostanie umieszczony m.in. kriostat, który ma utrzymać CCD w temperaturze -100 stopni Celsjusza. To pozowali na wyeliminowanie większości szumu, jaki mogłyby przechwycić czujniki.
      To jednak nie jedyne wyzwanie techniczne. Aparat potrzebuje do pracy ok. 1100 watów energii, a inżynierowie wciąż udoskonalają jego system chłodzenia. Ostatnio zdecydowali się na wykorzystanie innego płynu chłodzącego, co pociągnęło za sobą konieczność przebudowy całej instalacji chłodzącej.
      Do zamontowania pozostało jeszcze sześć filtrów, z których każdy przepuszcza światło o konkretnej długości fali. Pięć filtrów zostanie umieszczonych na karuzeli, a szósty znajdzie się w specjalnym schowku. Mechanizm potrzebuje około 2 minut, by umieścić odpowiedni filtr pomiędzy soczewkami a czujnikami CCD. Po zamontowaniu filtrów aparat zostanie zwrócony obiektywem w stronę podłogi i rozpoczną się testy w warunkach słabego oświetlenia.
      Gdy już całość będzie gotowa to transportu, z aparatu zostaną wymontowane soczewki i inne szklane elementy. Aparat zostanie umieszczony w specjalnie zabezpieczonym kontenerze, a całość poleci z San Francisco do Santiago.
      Obecne plany przewidują, że pierwsze zdjęcie nieba aparat wykona w 2024 roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Być może na południowym wybrzeżu Chile rośnie najstarsze drzewo na świecie. Ficroja cyprysowata ma pień o średnicy ponad 4 metrów i zwana jest Pradziadkiem. Część pnia obumarła, fragment korony odpadł, a drzewo pokryte jest mchami i porostami. Mimo to ficroja ciągle żyje, a najnowsze badania wskazują, że liczy sobie ponad 5000 lat. W tym czasie jakimś cudem drzewo uniknęło pożarów i ścięcia przez ludzi.
      Jonathan Barichivich, chilijski naukowiec, który pracuje w Laboratorium Klimatu i Nauk Przyrodniczych w Paryżu uważa, że Pradziadek ma ponad 5000 lat, a to oznacza, że jest o co najmniej 100 lat starszy od dotychczasowego rekordzisty, Matuzalemie. To sosna długowieczna z Kalifornii, która ma 4853 lata.
      Wielu dendrochronologów wątpi w stwierdzenia Barichivicha, tym bardziej, że szczegóły jego pracy nie zostały jeszcze opublikowane. Wiadomo, że nie posłużył się on metodą liczenia wszystkich pierścieni przyrostu Pradziadka. Jednak część ekspertów jest bardziej otwarta. W pełni ufam analizie Jonathana. To bardzo sprytne podejście, mówi Harald Bugmann, dendrochronolog ze Szwajcarskiego Instytutu Technologicznego w Zurichu (ETH Zurich).
      Ficroja należy do tej samej rodziny cyprysowatych co sekwoje i z większej odległości można je ze sobą pomylić. W 1993 roku Antonio Lara z Universidad Austral de Chile poinformował o znalezieniu pnia ficroi z 3622 pierścieniami wzrostu. To pokazało, że gatunek ten żyje dłużej niż sekwoja i może konkurować z sosną długowieczną. Jednak w badaniach tych nie uwzględniono Pradziadka, który jest oddalony od innych starych drzew znajdujących się w rezerwacie na zachód od miasta La Union.
      Barichivich mówi, że drzewo odkrył jego dziadek około 1972 roku. Rodzice naukowca pracowali jako strażnicy w rezerwacie,  Barichivich podejrzewa, że był jednym z pierwszych dzieci, które widziało to drzewo.
      W 2020 roku Barichivich i Lara za pomocą specjalnego wiertła pobrali próbki z pnia Pradziadka. Jako, że wiertło nie sięgało do środka pnia, próbka obejmowała około 2400 rocznych pierścieni wzrostu. Naukowcy wykorzystali model statystyczny do określenia wieku drzewa. Ich model pokazał, że drzewo może mieć 5484 lata i istnieje 80% szansy, że liczy sobie ponad 5000 lat.
      Na razie uczony przedstawił wyniki swoich badań podczas konferencji i odczytów, sporządził też krótki opis metody. Niektórzy specjaliści są zaintrygowani i mówią o interesującej metodzie oraz wynikach. Radzą jednak poczekać do publikacji w recenzowanym czasopiśmie. Inni eksperci odrzucają metodę Barichivicha. Jedynym sposobem na określenie rzeczywistego wieku drzewa jest policzenie wszystkich pierścieni wzrostu, mówi Ed Cook, dyrektor w Tree Ring Laboratory na Columbia University. Eksperci uważają, że szacowanie liczby pierścieni z czasów młodości drzewa na podstawie liczby pierścieni z późniejszego okresu wzrostu może być bardzo mylące, gdyż młode drzewo mogło mieć mniejszą konkurencję i rosnąć szybciej, niż w latach późniejszych.
      Barichivich mówi, że jego metoda uwzględnia taką możliwość. Zapowiada, że w najbliższych miesiącach przygotuje artykuł do publikacji w recenzowanym czasopiśmie.
      Niezależnie jednak od opinii specjalistów, sam fakt, że Pradziadek może być najstarszym drzewem na świecie może skłonić chilijski rząd do jego lepszej ochrony. Obecnie turyści mogą wspinać się na platformę umieszczoną na drzewie i spacerować wokół niego, ubijając ziemię i szkodząc korzeniom. Tymczasem klimat się ociepla, jest coraz bardziej sucho, a przez ubitą nogami ludzi ziemię drzewo ma gorszy dostęp do wody. Potrzebuje pilnej ochrony. Tak stare drzewa chroni się m.in. w ten sposób, że ich lokalizacja trzymana jest w tajemnicy, by uchronić drzewo przed turystami. Tak jest na przykład w przypadku Matuzalema. Jako, że lokalizacja Pradziadka jest znana, rząd chilijski będzie musiał podjąć zdecydowane kroki w celu ochrony drzewa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zakończył się proces ustawiania elementów optycznych Teleskopu Kosmicznego Jamesa Webba (JWST). Obsługa naziemna potwierdziła, że wszystkie cztery instrumenty naukowe teleskopu otrzymują ostry obraz, który można skoncentrować na wybranym obiekcie. W związku z tym zapadła decyzja o przejściu do ostatniej fazy przygotowań teleskopu do pracy – przekazania instrumentów naukowych do użytkowania.
      Już wcześniej pojawiały się informacje, że poszczególne elementy JWST pracują powyżej oczekiwań. Teraz NASA pochwaliła się, że cała optyka działa lepiej, niż najbardziej optymistyczne założenia. Jakość obrazu trafiająca do każdego z instrumentów jest ograniczona wyłącznie limitem dyfrakcyjnym, co oznacza, że odwzorowanie detali jest w tym przypadku najlepsze na jakie pozwalają prawa fizyki. Jako, że limit dyfrakcyjny jest zależny od długości fali obserwowanego światła oraz średnicy źrenicy wejściowej, oznacza to, że z optyka teleskopu działa najlepiej, jak to możliwe. Wraz z zakończeniem procesu ustawiania teleskopu moja praca przy nim dobiegła końca. Uzyskane obrazy głęboko zmieniły sposób, w jaki postrzegam wszechświat. Jesteśmy otoczeni przez symfonię stworzenia, galaktyki są wszędzie. Mam nadzieję, że wszyscy na świecie będą mogli to zobaczyć, stwierdził doktor Scott Acton z Ball Aerospace, który jest odpowiedzialny za elementy optyczne teleskopu.
      Teraz, gdy optyka teleskopu została ustawiona tak, jak należy, do Mission Operations Center w Space Telescope Science Institute w Baltimore przybyli eksperci, którzy skupią się na instrumentach naukowych JWST. Każdy z tych instrumentów to niezwykle skomplikowane urządzenie złożone z unikatowych soczewek, masek, filtrów i czujników. Każdy z tych elementów musi zostać skonfigurowany i sprawdzony w różnych ustawieniach, by w pełni potwierdzić gotować do pracy. Z kolei część specjalistów odpowiedzialnych za optykę zakończyła swoją przygodę z JWST.
      Mimo, że zakończono ustawianie teleskopu, prowadzone będą pewne prace związane z kalibracją. W ramach przekazania instrumentów naukowych do użytkowania JWST będzie kierowany na różne obszary nieboskłonu tak, by do jego osłony termicznej docierała różna ilość promieniowania słonecznego. Takie działania mają potwierdzić termiczną stabilność teleskopu podczas zmiany obserwowanych obiektów. Ponadto ustawienie zwierciadła głównego będzie co dwa dni sprawdzane i w miarę potrzeb wprowadzane będą korekty.
      Ostatnia faza przygotowywania JWST do pracy potrwa około 2 miesięcy. Latem teleskop rozpocznie badania naukowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Już niemal wszystkie instrumenty naukowe Teleskopu Kosmicznego Jamesa Webba zostały zsynchronizowane ze zwierciadłem głównym. Niemal wszystkie, gdyż ostatni z nich – Mid-Infrared Instrument (MIRI) – można będzie ustawić gdy osiągnie odpowiednią temperaturę pracy. MIRI potrzebuje tak niskiej temperatury, że nie wystarczy mu chłodzenie pasywne, dlatego jest od wielu dni schładzany za pomocą specjalnego nowatorskiego urządzenia kriogenicznego.
      Około połowy marca informowaliśmy, że zakończył się kluczowy etap ustawiania segmentów zwierciadła Teleskopu Webba. Aby tego dokonać, konieczne było dostrojenie zwierciadła głównego i wtórnego do urządzenia Near-Infrared Camera (NIRCam). To pozwoliło na przeprowadzenie niezbędnych testów i upewnienie się, że system optyczny Webba działa bez zarzutów. Uzyskano wówczas obraz wybranej gwiazdy wykonany za pomocą NIRCam. Po zakończeniu tego etapu rozpoczęto fazę dostrajania optyki do współpracy z Fine Guidance Sensor (FGS), Near-Infrared Slitless Spctrograph (NIRISS) oraz Near-Infrared Spectrometer (NIRSpec).
      Instrument NIRCam, z którym najpierw synchronizowano optykę, to pracująca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. Jej celem jest zarejestrowanie światła pierwszych gwiazd i galaktyk, obrazowanie gwiazd w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej czy obiekty w Pasie Kuipera. Kamerę wyposażono w koronografy, pozwalające na fotografowanie bardzo słabo świecących obiektów, znajdujących się w pobliżu obiektów znacznie jaśniejszych. Dzięki temu możliwe będą dokładne obserwacje planet krążących wokół pobliskich gwiazd.
      NIRSpec również działa w zakresie 0,6–5 mikrometrów. Spektrograf będzie rejestrował całe widmo promieniowania, co pozwoli na poznanie cech fizycznych badanych obiektów, jak ich masa temperatura czy skład chemiczny. Z kolei FGS/NIRISS będzie odpowiedzialny za precyzyjne pozycjonowanie Webba na wybrane obiekty, wykrycie pierwszego światła, jakie rozbłysło we wszechświecie oraz wykrywanie, charakteryzowanie i badania spektroskopowe egzoplanet.
      Instrument, na którego zestrojenie z optyką wciąż czekamy, to MIRI. Składa się on z kamery i spektrografu pracujących w średnich zakresach podczerwieni (5–28 mikrometrów). To niezwykle czułe urządzenie naukowe. MIRI zobaczy przesunięcie ku czerwieni odległych galaktyk, słabo widoczne planety, tworzące się dopiero gwiazdy, będzie obserwował obiekty w Pasie Kuipera.
      To ono dostarczy nam najbardziej spektakularnych zdjęć. Jednak, by móc wykorzystać swoje niezwykłe możliwości, musi zostać schłodzony do temperatury -266,15 stopni Celsjusza. Osiągnięcie tak niskiej temperatury nie jest możliwe za pomocą samego tylko pasywnego chłodzenia i ochrony zapewnianej przez osłonę przeciwsłoneczną. Potrzebne jest chłodzenie aktywne, za które odpowiada nowatorskie dwustopniowe urządzenie. Jego pierwszy stopień schłodzi MIRI do temperatury -255,15 stopni, a dzięki drugiemu MIRI osiągnie wymaganą temperaturę pracy wynoszącą -266,15 stopni Celsjusza. To zaledwie 7 stopni powyżej zera absolutnego.
      Do niedawna temperatura MIRI spadała bardzo wolno. W ciągu 54 dni chłodzenia pasywnego zmniejszyła się ona o 58 stopni. Przed 10 dniami włączono chłodzenie aktywne i w tym czasie temperatura MIRI spadła o kolejne 52 stopnie. W chwili pisania tego tekstu temperatura MIRI wynosi -231,35 stopni Celsjusza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...