Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Przez kosmos pędzi gigantyczna czarna dziura i ciągnie za sobą ogon z gwiazd

Rekomendowane odpowiedzi

Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.

Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.

Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.

To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.

Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.

Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.

Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wyobraźcie sobie cywilizację która powstałaby na jednej z gwiazd w "ogonku". Mając przed sobą "zderzak" w postaci gigantycznej czarnej dziury mkną przez wszechświat.

My mamy Gwiazdę Polarną, Księżyc, Plejady. Wszystko to buduje mitologie ziemskich społeczeństw od neolitu a może i wcześniej. A Oni ... patrzą w przestrzeń nieba, widzą czerń i dysk akrecyjny.

  • Lubię to (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 8.04.2023 o 10:56, krzysztof B7QkDkW napisał:

Wyobraźcie sobie cywilizację która powstałaby na jednej z gwiazd w "ogonku". Mając przed sobą "zderzak" w postaci gigantycznej czarnej dziury mkną przez wszechświat.

My mamy Gwiazdę Polarną, Księżyc, Plejady. Wszystko to buduje mitologie ziemskich społeczeństw od neolitu a może i wcześniej. A Oni ... patrzą w przestrzeń nieba, widzą czerń i dysk akrecyjny.

Rewelacja ! Nie wiem, to chyba kompletnie niemożliwe - ale zakładając że ta odległość nie jest wielka .... to niezły temat na książkę czy film SF

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, Ergo Sum napisał:

chyba kompletnie niemożliwe

? :huh: ... C N P Ca Mg Cl K Na S podlać H2O odczekać 4 miliardy lat i ma my E.T., albo innego ksenomorfa. Aaaa... i jeszcze nie można wykluczyć że już coś zaawansowanego nie zostało porwane "po drodze". Wydaje mi się (gdybać sobie mogę) że kluczowym czynnikiem w procesie powstania życia jest czas i skład chemiczny "pierwotnej zupy", albo jak kto woli bigosu. Popatrz Ziemia ostygła jakieś 4,2 mld lat temu. Wiek najstarszych zachowanych skał szacuje się właśnie na ten okres. Najstarsza znana ziemska materia pochodzenia biogenicznego datowana jest na 3,7 mld lat. Znaczy potrzeba pół miliarda lat żeby "zacier" zaczął bulgotać.

Pół miliarda? Jak sobie człowiek wyobrazi że miliard równa się tysiąc milionów ... to tak jakby sekunda była równa jednemu dolarowi ... to dzień wart jest 86 400$, miesiąc 2 592 000$, rok to 31 104 000$ ...

Jeden milion jest jak jedenaście dni, jeden miliard to około 32 lata.

PS

Jakby ktoś populistom ( a w zasadzie ich wyborcom ) od rozdawania pieniędzy publicznych chciał obrazowo wyjaśnić co to jest Miliard ...

To dosłownie co dzień przez trzydzieści dwa lata "przepalać" dwie roczne pensje pracownika zarabiającego 3 600 zł netto.

No ten, że tak powiem, wiadomo kogo ... to ja bym !@#$%&^* a następnie &*^%^$%#$@#! przy użyciu !*@&#^$%. Publicznie przez miesiąc, przed budynkiem Sejmu.

Edytowane przez krzysztof B7QkDkW

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Polecam film Interstellar jak chodzi o ciekawe wyobrazenie tematu czarnej dziury albo Gwiezdne Wrota Sg-1 sezon 2 odcinek 16,jesli chodzi o interesujące wykorzystanie czarnej dziury,też warto wspomnieć o serialu Zagubieni w kosmosie,tam też ten wątek się przewija w jednym z odcinków.

  • Negatyw (-1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 10.04.2023 o 11:45, krzysztof B7QkDkW napisał:

Wydaje mi się (gdybać sobie mogę) że kluczowym czynnikiem w procesie powstania życia jest czas i skład chemiczny "pierwotnej zupy", albo jak kto woli bigosu

I temperatura, ciśnienie, brak promieniowania zbyt intensywnego. Reszta ok.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 godzin temu, thikim napisał:

temperatura, ciśnienie, brak promieniowania

Ekstremofile. W pewnych zakresach, bo raczej nie sposób żyć i ewoluować na w roztopionej lawie / w temperaturze ciekłego wodoru. Życie jednak jest w stanie rozwijać się dość specyficznych (dla człowieka) warunkach. Woda chłodząca reaktory atomowe zasiedlona przez bakterie Deinococcus radiodurans, grzybek rosnący na konstrukcji czarnobylskiego reaktora, z tych bardziej złożonych organizmów niesporczaki.

Racja żeby zdołało to wyewoluować do form podobnych człowiekowi potrzeba "łagodnych warunków". A co jak Ridley Scott i ekipa filmu Obcy - 8. pasażer "Nostromo" intuicyjnie i trafnie przewidzieli możliwość istnienia złożonych istot funkcjonujących w skrajnie niekorzystnym środowisku.

W drugiej części Obcy - decydujące starcie, jeden z Marine Corps na odprawie wypowiada kwestie. Is this gonna be a stand-up fight, sir, or another bug hunt? Zasadniczo to jedno zdanie może opisywać stulecia badań nad egzo - planetami (a może i ewentualną eksplorację, o ile uda nam się przemieszczać po galaktyce w "rozsądnych" przedziałach czasu).

Będziemy co najwyżej odnajdywać jakieś proste formy bakteryjne. (dowody na istnienie jakichś prostych form - widma złożonych związków organicznych w atmosferach). Aż do momentu jak dostrzeżemy coś więcej ... Lustra orbitalne puszczą nam w obiektywy teleskopów "zajączka". Zauważymy przypadkiem termonuklearne eksplozje w miejscu gdzie powinna a raczej parę miesięcy temu była planeta. Jakiś żółty karzeł zapadnie się nagle do postaci czarnej dziury, a my będziemy podejrzewać że musieli tam także mieć jakiegoś debila co karteczki z napisem ...

Przycisk. Zabranie się ruszać.

... Nie potrafił przeczytać.

Edytowane przez krzysztof B7QkDkW

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół, kierowany przez naukowców z University of Texas w Austin, zidentyfikował najbardziej odległą i najstarszą czarną dziurę, jaką kiedykolwiek potwierdzono obserwacyjnie. Dziura i jej macierzysta galaktyka CAPERS-LRD-z9, istniały zaledwie 500 milionów lat po Wielkim Wybuchu, 13,3 miliarda lat temu.

      Odkrycia dokonano za pomocą teleskopu Jamesa Webba (JWST) w ramach programu CAPERS (CANDELS-Area Prism Epoch of Reionization Survey), którego celem jest identyfikacja i analiza najodleglejszych galaktyk. Kluczowe było zastosowanie spektroskopii, pozwalającej na rozszczepienie światła na poszczególne długości fal i wykrycie charakterystycznych przesunięć widma, wywołanych ruchem gazu wokół czarnej dziury. Dzięki temu astronomowie wykryli gaz poruszający się z prędkością ponad 3500 km/s. To sygnał wskazujący na istnienie aktywnego jądra galaktycznego. Zauważono je przy przesunięciu ku czerwieni z = 9,288.

      Galaktyka należy do intrygującej klasy Małych Czerwonych Kropek (Little Red Dots). To odkryte w 2024 roku przez JWST kompaktowe obiekty, które pojawiły się między 0,6 a 1,5 miliarda lat po powstaniu wszechświata. W przypadku CAPERS-LRD-z9 źródłem intensywnego blasku jest supermasywna czarna dziura. Jej masę oszacowano na nawet 300 milionów mas Słońca, co stanowi do połowy masy wszystkich gwiazd w galaktyce.

      Modelowanie emisji w zakresie UV i optycznym sugeruje, że czarna dziura jest otoczona gęstym obłokiem neutralnego gazu o gęstości rzędu 1010 cząsteczek wodoru na centymetr sześcienny. Ten gaz, działając jak filtr, nadaje obserwowanej galaktyce charakterystyczny czerwony odcień. Obserwacje wskazują również na małe rozmiary galaktyki, jej średnica to około 1100 lat świetlnych.

      Tak masywna czarna dziura w tak młodym Wszechświecie rodzi fundamentalne pytania o mechanizmy ich powstawania. Być może czarne dziury we wczesnym wszechświecie rosły znacznie szybciej, niż zakładają obecne modele, albo też rozpoczynały swoje istnienie od znacznie większej masy.
      Więcej na ten temat: CAPERS-LRD-z9: A Gas-enshrouded Little Red Dot Hosting a Broad-line Active Galactic Nucleus at z = 9.288.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
      Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
      Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
      O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
      To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
      Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
      Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
      Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
      Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
      NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
      To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
      Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
      Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
      Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
      Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
      Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
      Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
      Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po kilkudziesięciu latach poszukiwań astronomowie znaleźli gwiazdy w Strumieniu Magellanicznym. Ten strumień gazowych chmur o dużej prędkości rozciąga się na 600 000 lat świetlnych i znajduje w odległości około 180 000 lat świetlnych od Drogi Mlecznej. Zauważono go po raz pierwszy z 1965 roku, a w 1972 stwierdzono, że łączy on Wielki i Mały Obłok Magellana i jest z nimi powiązany. Pomimo tego, że – wedle obowiązujących teorii naukowych – w strumieniu powinny znajdować się gwiazdy, dotychczas jednoznacznie ich nie odnaleziono. Aż do teraz.
      Vedant Chandra z Center for Astrophysics Harvard & Smithsonian oraz naukowcy z USA i Australii zaobserwowali 13 czerwonych olbrzymów położonych w odległości od 200 do 325 tysięcy lat świetlnych od Ziemi, które mają ten sam moment pędu i podobny skład chemiczny, co gaz w Strumieniu.
      Odkrycia dokonano dzięki analizie katalogu Gaia, w którym znajdują się informacje o ponad miliardzie gwiazd. Naukowcy najpierw odrzucili gwiazdy, które prawdopodobnie należą do Drogi Mlecznej, następnie zaś skupili się na gwiazdach o składzie chemicznym podobnym do składu Strumienia.
      Po raz pierwszy obserwujemy gwiazdy towarzyszące Strumieniowi. To nie tylko rozwiązuje zagadkę samych gwiazd, ale również zdradza nam wiele użytecznych informacji na temat ruchu samego gazu, wyjaśnia Chandra. Obserwacje nowo odkrytych gwiazd pozwolą nie tylko bardziej precyzyjnie określić pozycję i ruch Strumienia, ale również zbadać ruch Obłoków Magellana, galaktyk satelitarnych Drogi Mlecznej.
      Połowa ze zidentyfikowanych gwiazd jest bogata w metale – tutaj trzeba przypomnieć, że metalami w astronomii określa się pierwiastki cięższe od wodoru i helu – i znajduje się bliżej Strumienia, druga połowa jest uboga w metale, te gwiazdy są bardziej rozproszone. Chandra i jego zespół uważają, że różnica ta bierze się z faktu, że gwiazdy bogate w metale uformowały się niedawno w Strumieniu Magellanicznym, natomiast gwiazdy ubogie w metale to populacja wyrzucona z obrzeży Małego Obłoku Magellana podczas interakcji pomiędzy oboma Obłokami. Zdaniem komentujących odkrycie naukowców, gwiazdy o niskiej metaliczności mogą nie być częścią Strumienia, ale są w jakiś sposób z nim powiązane.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...