Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Od przybytku głowa nie boli

Rekomendowane odpowiedzi

W całym świecie ożywionym komórki polegają na zjawisku dyfuzji, która umożliwia im wymianę metabolitów, wszelkich innych substancji oraz informacji z otoczeniem. Jest to zjawisko bardzo proste i wystarczająco wydajne, lecz niestety działa wyłącznie na niewielkie odległości. Co prawda komórki organizmów wyższych znalazły wiele sposobów na udoskonalenie procesów wymiany, co pozwoliło im na uzyskanie większych rozmiarów, lecz komórki bakteryjne przeważnie muszą pozostać małe, by przeżyć.

Do wyjątków należą mikroorganizmy symbiotyczne względem egzotycznych ryb, zwanych pokolcami, należące do rodzaju Epulopiscium. Ich komórki mogą osiągać gigantyczną wręcz, jak na bakterie, wielkość około sześciuset mikrometrów (czyli ponad pół milimetra). Dla porównania: pojedynczy ludzki erytrocyt (czerwona krwinka) ma zaledwie siedem mikrometrów średnicy. Dzięki współpracy naukowców z USA i Nowej Zelandii udało się ustalić prawdopodobną przyczynę osiągania przez te niezwykłe mikroorganizmy swoich rozmiarów: bakterie te posiadają niezwykle dużą liczbę kopii DNA wewnątrz pojedynczej komórki.

Obecność wielu kopii genomu w jednej komórce, zwana poliploidią, nie jest wśród organizmów żywych niczym nowym, lecz u bakterii rodzaju Epulopiscium przybiera ona niespotykaną w świecie ożywionym skalę. Na dodatek niezwykle interesujący jest rozkład poszczególnych kopii DNA, zlokalizowanych w tzw. chromosomach bakteryjnych, wewnątrz komórki. W przeciwieństwie do powszechnego ulokowania materiału genetycznego w centralnej części komórki, gigantyczna bakteria posiada poszczególne cząsteczki DNA rozsiane w częściach peryferyjnych swojego "ciała". Zapewnia to stałą bliskość przynajmniej jednej cząsteczki DNA w stosunku do dowolnego miejsca w komórce, dzięki czemu możliwa jest odpowiednio szybka reakcja na bodźce zewnętrzne poprzez aktywację odpowiednich genów, której efektem jest najczęściej produkcja białek.

Dotychczas większość bakterii, aby osiągnąć większy rozmiar komórki, była zmuszona do uzyskania spłaszczonego kształtu komórki, co pozwalało na zwiększenie stosunku powierzchni do objętości i przez to - przyśpieszenie wymiany cząsteczek z otoczeniem. (doskonale ilustruje to zjawisko fakt, że woda stygnie szybciej na płaskim talerzu niż w kubku - szybciej wymienia ciepło z otoczeniem). Organizmy wyższe wykształciły w tym samym celu skomplikowane systemy złozone z tzw. przenośników, czyli białek wyspecjalizowanych w transporcie odpowiednich substancji do wnętrza komórki lub poza jej obręb. Taktyka przyjęta (i rozwinięta na tak wielką skalę) przez bakterie Epulopiscium jest dla naukowców nowością.

Aby obliczyć ilość DNA w pojedynczej komórce, naukowcy użyli metody zwanej Real-Time PCR (co można przetłumaczyć jako "reakcja łańcuchowa polimerazy w czasie rzeczywistym"). Polega ona na tym, że za pomocą specjalnego enzymu przeprowadzana jest replikacja DNA, a powstanie każdej kolejnej jego kopii powoduje uwolnienie cząsteczki zdolnej do fluorescencji. Pomiar ilości powstającego w ten sposób światła daje odpowiedź, jak wiele cząsteczek DNA znajdowało się w próbce. Ustalono w ten sposób, że pojedyncza komórka tej zadziwiającej bakterii zawiera łącznie DNA o masie od 13 aż do 41 razy większej w stosunku do typowej komórki w ciele człowieka. Warto jednak zaznaczyć, że nie istnieje prosta zależność pomiędzy ilością DNA w komórce i złożonością genomu - należy bowiem pamiętać, że w przypadku bakterii mamy do czynienia z tysiącami kopii (mówiąc dokładniej, było ich średnio nieco ponad 40 tysięcy) bardzo prostego genomu, natomiast u człowieka w typowej komórce dysponujemy dwiema kopiami (w przypadku komórek rozrodczych - jedną) materiału genetycznego, lecz jest on bez porównania bardziej złożony. Z kolei wielkość pojedynczej kopii genomu u przedstawicieli rodzaju Epulopiscium nie odbiega od tej spotykanej u innych bakterii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli, te kopie komunikują się między sobą, to to jest organizm złożony. Podobnie jak organizmy wielokomórkowe i jedyną różnicą jest wspólna błona komórkowa i wspólne mitochondria.

Jest to ciekawsze rozwiązanie niż zlepek komórek (zwany organizmami wielokomórkowymi). Istotą potęgi organizmów wielokomórkowych (złożonych) jest wydajny podział zadań. Część komórek może tworzyć np: kości, włosy, soczewki, itd.

To właśnie ten podział zadań daje przewagę organizmów wielokomórkowych nad jednokomórkowymi.

Jeśli by geny, w tej "bakterii", potrafiły komunikować się między sobą i ustalać jakiś podział zadań, to mamy nową jakość w powstawaniu Życia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To nie jest żaden organizm złożony, bo ma wciąż tylko jedną komórkę, w której czynny jest cały komplet genów. za wyjątkiem DNA mitochondrialnego, bo bakterie nie zawierają mitochondriów.

Tak czy owak rewelacja brzmi podejrzanie, jako że stosunek powierzchni do objętości jest barierą fizyczną. Ponadto doniesienie o tak wielkich bakteriach nie jest pierwszym, ale jak dotąd wszystkie okazały się nieprawdziwe.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
rewelacja brzmi podejrzanie, jako że stosunek powierzchni do objętości jest barierą fizyczną.

Niby tak, ale... Po pierwsze: im bliżej są geny odpowiedzialne za rozłożenie danej substancji, tym większa jest dostępność enzymów zamieniających ją na użyteczny związek. Po drugie: komórka bakteryjna może sobie poradzić z wieloma problemami poprzez tworzenie tzw. ciałek inkluzyjnych, czyli odkładanie śmieci w pseudokryształkach. Może też wytwarzać wakuole, w których gromadzi wszystkie śmieci. A jeśli jest beztlenowa, da sobie radę bez tego gazu. Teoretycznie istnienie takiej bakterii naprawdę jest możliwe. A czy w praktyce zostanie potwierdzone, to się pewne okaże, choć praca źródłowa na ten temat robi wrażenie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To nie jest żaden organizm złożony, bo ma wciąż tylko jedną komórkę, w której czynny jest cały komplet genów.

Zazwyczaj komórka składa się z jednego kompletu genów otoczonego błoną komórkową, której to zadaniem jest osłona, obrona, itd. tego kompletu DNA. Ale jeden komplet genów nie musi odgradzać się od drugiego kompletu, jakąś błoną, by istnieć. Jeśli te geny nie będą się zwalczać, to wystarczy im wspólna błona. W organizmach złożonych geny łatwiej by się komunikowały między sobą gdyby tych błon nie było. Zdaje się, że ta  złożona z wielu kopii DNA "bakteria" pozbyła się tych zbytecznych błon. I najciekawsze jest, czy w tej komórce jest jakaś współpraca tych kopii? Czy np: lewa kopia DNA może produkować związek A, prawa kopia produkować związek B, środkowa kopia związek C, itd?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A, i jeszcze jedno. Komórczaki, czyli zlepy komórek posiadające wiele kopii DNA, nie są niczym nowym w przyrodzie. Choćby tkanka mieśniowa jest tak zbudowana.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Badania DNA ludzi zabitych w Pompejach przez Wezuwiusza pokazały, jak błędne były czynione przez wieki założenia. Okazuje się, że rzekome rodziny nie były rodzinami, zmarłym źle przyporządkowano płeć. Okazało się ponadto, że ludność Pompejów w większości stanowili emigranci ze wschodnich regionów Morza Śródziemnego.
      Erupcja Wezuwiusza nie dała szans na ucieczkę wielu mieszkańcom miasta. Ci, którzy przeżyli pierwszą jej fazę, zabiły lawiny piroklastyczne, szybko przemieszczające się chmury gorących gazów i popiołów. Pokryły one ciała ofiar grubą warstwą, na zawsze zachowując ich kształt.
      Od XIX wieku naukowcy wykonują w Parco Archeologico di Pompei odlewy ciał, wstrzykując gips z puste miejsca, pozostałe po rozłożeniu się tkanek. Uczonym, którzy prowadzili zabiegi konserwatorskie, udało się pozyskać DNA z pofragmentowanych szkieletów zatopionych w 14 z 86 tych odlewów. To zaś pozwoliło na określenie płci zmarłych, ich pochodzenia oraz związków genetycznych pomiędzy nimi. I pokazało, jak błędne były dotychczasowe założenia, które opierano na wyglądzie i pozycji ciał.
      Na przykład w Domu Złotej Bransolety, jedynym miejscu z którego mamy DNA całej grupy ciał, okazało się, że cztery osoby, które interpretowano jako rodzice z dwójką dzieci, nie były w żaden sposób ze sobą spokrewnione, mówi profesor David Caramelli z Uniwersytetu we Florencji. To nie jedyne błędne przypuszczenia, zweryfikowane przez DNA.
      Innym znanym przykładem jest dorosła osoba nosząca złotą bransoletę i trzymająca dziecko. Tradycyjnie interpretowano je jako matkę z dzieckiem. Okazało się, że to mężczyzna i dziecko, którzy nie byli ze sobą spokrewnieni. Mamy też dwie obejmujące się osoby, które interpretowano jako matka z córką lub siostry. Teraz wiemy, że jedna z tych osób to mężczyzna, dodaje David Reich z Uniwersytetu Harvarda.
      Ponadto wszyscy mieszkańcy Pompejów, w przypadku których udało się zdobyć dane z całego genomu, okazali się w głównej mierze potomkami emigrantów ze wschodnich regionów Śródziemiomorza. Pochodzenie takie widoczne jest też w genomach współczesnych im mieszkańców Rzymu, co tylko pokazuje, jak kosmopolityczne było Imperium Romanów w tych czasach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komórki bakterii potrafią „zapamiętać” krótkotrwałe tymczasowe zmiany w samych sobie i otoczeniu. I mimo że zmiany te nie zostają zakodowane w genomie, mogą być przekazywane potomstwu przez wiele pokoleń. Odkrycie dokonane przez naukowców z Nortwestern University i University of Texas nie tylko rzuca wyzwanie naszemu rozumieniu biologii najprostszych organizmów oraz sposobom, w jaki przekazują i dziedziczą cechy fizyczne. Może również zostać wykorzystane w medycynie.
      Podstawowe założenie z dziedziny biologii bakterii mówi, że dziedziczne zmiany fizyczne są u nich kodowane w DNA. Jednak, z perspektywy bardziej złożonych organizmów, wiemy, że informacja może być też przechowywana w sieci regulacyjnej genów. Chcieliśmy więc sprawdzić, czy istnieją cechy przekazywane przyszłym pokoleniom nie za pomocą DNA. Odkryliśmy, że czasowe zmiany w regulacji genów odciskają trwałe ślady, które zostają przekazane następnym pokoleniom, stwierdzają badacze.
      Nauka przez kilkadziesiąt lat uważała, że cechy organizmu są przekazywane przede wszystkim, jeśli nie wyłącznie, w DNA. Jednak w 2001 roku, po ukończeniu Human Genome Project, założenie to trzeba było zmienić. Obecnie wiemy, że nie tylko zmiany w DNA wchodzą tutaj w grę. Niedawne badania wykazały na przykład, że dzieci holenderskich mężczyzn, którzy w życiu płodowym doświadczyli wraz z matkami głodu w czasie II wojny światowej, są bardziej narażone na otyłość jako dorośli. Wiemy, że przyczyną nie są tutaj zmiany genetyczne. Jednak u ludzi znalezienie podstawowej przyczyny takiego niegenetycznego dziedziczenia jest bardzo trudne.
      Profesor Adilson Motter i jego zespół zaczęli się zastanawiać, czy nie łatwiej byłoby śledzić takie zmiany u prostszych organizmów. Przyjrzeli się więc Escherichii coli. W przypadku E. coli cały organizm to pojedyncza komórka. Ma ona mniej genów, około 4000, w porównaniu z ludzkimi 20 000. Brak jej też wewnątrzkomórkowych struktur będących podstawą trwałości DNA u drożdży oraz różnorodności rodzajów komórek u wyżej rozwiniętych organizmów. E. coli to dobrze zbadany organizm modelowy, do pewnego stopnia znamy też jej sieć regulacyjną genów (GRN), stwierdza współautor badań, Thomas Wytock.
      Naukowcy wykorzystali model matematyczny GRN do czasowego wyłączania i włączania genów E. coli. Okazało się, że takie przejściowe zaburzenia mogą powodować trwałe zmiany, które są przekazywane przez wiele pokoleń. Teraz uczeni przygotowują się do eksperymentów laboratoryjnych, podczas których będą weryfikowali swoje odkrycie.
      Jeśli mają rację i zmiany są kodowane raczej w GRN niż w DNA, powstaje pytanie o przekazywanie ich kolejnym pokoleniom. Autorzy badań zaproponowali hipotezę, zgodnie z którą odwracalne zmiany wywołują nieodwracalne zaburzenia w sieci regulacyjnej genów. Wyłączenie jednego genu, wpływa na gen sąsiadujący, to zaś wpływa na kolejny gen. Gdy pierwszy z genów ponownie zostanie włączony, trwa już reakcja łańcuchowa, która jest odporna na zmiany z zewnątrz. Naukowcy sądzą, że taki wpływ ma nie tylko dezaktywacja i aktywacja genów, ale również różne zmiany środowiskowe. Może to być zmiana temperatury, dostępności pożywienia czy kwasowości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedźwiedzie polarne są zagrożone przez zmniejszający się zasięg lodu morskiego w Arktyce, na którym spędzają większość życia. Naukowcy chcieliby badać i nadzorować ten gatunek, by go ocalić. Uczeni z University of Idaho znaleźli unikatową nieinwazyjną metodę identyfikowania niedźwiedzi polarnych. Zamiast stresować je śledząc za pomocą śmigłowców, strzelać środkami usypiającymi i zakładać urządzenia namierzające, amerykańscy uczeni pozyskują DNA niedźwiedzi z... odciśniętych na śniegu śladów łap.
      Na łamach Frontiers in Conservation Science profesor Lisett Waits i badaczka Jennifer Adams z Idaho, we współpracy ze specjalistami z North Slope Borough Department of Wildlife oraz Alaska Department of Fish and Game opisali, w jaki sposób można pozyskać ze śniegu komórki naskórka niedźwiedzi.
      Naukowcy najpierw zeskrobywali cienką warstwę śniegu ze świeżych śladów, a następnie w laboratorium zbierali komórki i analizowali ich DNA. W ten sposób zbierali unikatowe informacje o każdym z osobników. We wstępnej fazie badan pobrali 15 próbek. W 2 z nich nie znaleziono DNA niedźwiedzia, w 11 zaś stwierdzono jego obecność. Na razie technika ta znajduje się w fazie eksperymentalnej i wymaga dopracowania, jednak już w tej chwili widać, że jest nieinwazyjnym i efektywnym kosztowo sposobem badania dzikich niedźwiedzi polarnych.
      O ile nam wiadomo, to pierwszy przypadek identyfikowania niedźwiedzi polarnych czy jakichkolwiek innych zwierząt na podstawie pozostawionego w środowisku DNA zebranego ze śniegu, cieszy się Adams.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wytrzymałe i lekkie materiały są niezwykle pożądane w przemyśle i życiu codziennym. Mogą one udoskonalić wiele maszyn i przedmiotów, od samochodów przez implanty medyczne po kamizelki kuloodporne. Niestety wytrzymałość i niska masa zwykle nie idą w parze. Poszukujący rozwiązania tego problemu naukowcy z University of Connecticut, Columbia University i Brookhaven National Laboratory wykorzystali DNA i szkło. Dla tej gęstości jest to najbardziej wytrzymały znany materiał, mówi Seok-Woo Lee z UConn.
      Żelazo może wytrzymać nacisk do 7 ton na centymetr kwadratowy, jest jednak bardzo gęste i ciężkie. Znamy metale, jak tytan, które są lżejsze i bardziej wytrzymałe. Potrafimy też tworzyć stopy metali o jeszcze mniejszej masie i jeszcze większej wytrzymałości. Ma to bardzo praktyczne zastosowania. Na przykład najlepszym sposobem na zwiększenie zasięgu samochodu elektrycznego nie jest dokładanie akumulatorów, a zmniejszenie masy pojazdu. Problem w tym, że tradycyjne techniki metalurgiczne osiągnęły w ostatnich latach kres swoich możliwości, naukowcy szukają więc innych niż metale wytrzymałych i lekkich materiałów.
      Szkło, wbrew temu co sądzimy, jest wytrzymałym materiałem. Kostka szkła o objętości 1 cm3 może wytrzymać nacisk nawet 10 ton. Pod jednym warunkiem – szkło nie może posiadać wad strukturalnych. Zwykle pęka ono właśnie dlatego, że już istnieją w nim niewielkie pęknięcia, zarysowania czy brakuje atomów w jego strukturze. Wytworzenie dużych kawałków szkła pozbawionego wad jest niezwykle trudne. Naukowcy potrafią jednak tworzyć niewielkie takie kawałki. Wiedzą na przykład, że kawałek szkła o grubości mniejszej niż 1 mikrometr jest niemal zawsze bez wad. A jako że szkło jest znacznie mniej gęste niż metale czy ceramika, szklane struktury zbudowane kawałków szkła o nanometrowej wielkości powiny być lekkie i wytrzymałe.
      Dlatego też Amerykanie wykorzystali DNA, które posłużyło za szkielet, i pokryli je niezwykle cienką warstwą szkła o grubości kilkuset atomów. Szkło pokryło jedynie nici DNA, pozostawiając sporo pustych przestrzeni. Szkielet z DNA dodatkowo wzmocnił niewielką, pozbawioną wad, szklaną strukturę. A jako że spora jej część to puste przestrzenie, dodatkowo zmniejszono masę całości. W ten sposób uzyskano materiał, który ma 4-krotnie większą wytrzymałość od stali, ale jest 5-krotnie mniej gęsty. To pierwszy tak lekki i tak wytrzymały materiał.
      Możliwość projektowania i tworzenia trójwymiarowych nanomateriałów przy użyciu DNA otwiera niezwykłe możliwości przed inżynierią. Jednak potrzeba wielu badań, zanim możliwości te wykorzystamy w konkretnych technologiach, stwierdza Oleg Gang z Columbia University.
      Teraz naukowcy prowadzą eksperymenty z zastąpieniem szkła ceramiką opartą na węglikach. Planują przetestować różne struktury DNA i różne materiały, by znaleźć takie o najlepszych właściwościach.
      Jestem wielkim fanem Iron Mana. Zawsze zastanawiałem się, jak stworzyć lepszą zbroję dla niego. Musi być one bardzo lekka, by mógł szybciej latać i bardzo wytrzymała, by chroniła go przed atakami wrogów. Nasz nowy materiał jest pięciokrotnie lżejszy i czterokrotnie bardziej wytrzymały od stali. Nasze szklane nanostruktury byłyby lepsze dla Iron Mana niż jakikolwiek inny materiał, stwierdził Lee.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ludzkie DNA jest jest wszędzie. W piasku na plaży, w oceanie, unosi się w powietrzu. Bez przerwy rozsiewamy je wokół siebie. Z jednej strony to dobra wiadomość dla naukowców, z drugiej zaś, rodzi to poważne dylematy etyczne. Jak bowiem donoszą naukowcy z University of Florida, którzy przeprowadzili badania nad obecnością DNA H. sapiens w środowisku, rozprzestrzeniany przez nas materiał genetyczny jest bardzo dobrej jakości. Tak dobrej, że możliwe jest zidentyfikowanie mutacji powiązanych z chorobami czy określenie przodków społeczności żyjącej w miejscu pobrania próbek. Można je nawet połączyć z konkretnymi osobami, jeśli oddadzą próbki do badań porównawczych.
      Z tego wszechobecnego kodu genetycznego mogą korzystać zarówno naukowcy, którzy badając ścieki określą kancerogenne mutacje czy analizując glebę znajdą nieznane osady sprzed wieków, jak i policjanci, analizujący środowiskowe DNA (eDNA) unoszące się w powietrzu na miejscu przestępstwa. Naukowcy z Florydy mówią, że potrzebne są uregulowania prawne i określenie zasad etycznych dotyczących korzystania z DNA pozostawionego w środowisku.
      Przez cały czas prowadzenia badań nie mogliśmy wyjść ze zdumienia ani nad tym, jak wiele ludzkiego DNA wszędzie znajdujemy, ani nad jego jakością. W większości przypadków jakość ta była niemal tak dobra, jak jakość próbek pobranych bezpośrednio od człowieka, mówi profesor David Duffy, który kierował pracami.
      Już wcześniej Duffy i jego zespół znakomicie zaawansowali badania nad zagrożonymi żółwiami morskimi i powodowanym przez wirusa nowotworem, który je trapił, pobierając próbki DNA żółwi ze śladów na piasku, pozostawionych przez przemieszczające się zwierzęta. Naukowcy wiedzieli, że ludzkie DNA może trafić do próbek z DNA żółwi. Zaczęli się zastanawiać, jak wiele jest tego ludzkiego DNA w środowisku i jakiej jest ono jakości.
      Naukowcy znaleźli dobrej jakości ludzkie DNA w oceanie i rzekach w pobliżu swojego laboratorium, zarówno w samym mieście, jak i w odległych regionach, odkryli je też w piasku odizolowanych plaż. Po uzyskaniu zgody od National Park Service naukowcy wybrali się na odległą wyspę, na którą nie zapuszczają się ludzie. Tam ludzkiego DNA nie znaleźli. Byli jednak w stanie zsekwencjonować ludzki genom ze śladów stop pozostawionych na piasku. Duffy wybrał się też na swoją rodzimą Irlandię. Pobierał próbki wzdłuż jednej z rzek i wszędzie znalazł materiał genetyczny ludzi. Wszędzie, z wyjątkiem odległych od osad źródeł rzeki. Naukowcy zbadali też powietrze w klinice weterynaryjnej. Znaleźli tam DNA pracowników, leczonych zwierzą oraz wirusów.
      Teraz gdy stało się jasne, że ze środowiska z łatwością można pozyskać materiał genetyczny wysokiej jakości, potrzebne są odpowiednie rozwiązania prawne. Za każdym razem, gdy dokonujemy postępu technologicznego, niesie on ze sobą zarówno korzyści, jak i zagrożenia. I tym razem nie jest inaczej. Musimy wcześnie o tym informować, by społeczeństwa zdążyły opracować odpowiednie rozwiązania, mówi Duffy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...