Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Mózg neandertalczyka popełniał więcej błędów podczas rozwoju niż mózg H. sapiens

Rekomendowane odpowiedzi

Macierzyste komórki mózgu Homo sapiens popełniają mniej błędów niż komórki neandertalczyka w przekazywaniu chromosomów komórkom potomnym. To jeden z elementów, które mogą wyjaśniać, dlaczego obecnie jesteśmy jedynym gatunkiem rodzaju Homo, który chodzi po Ziemi.

U ssaków wyższych, w tym u człowieka, kora nowa stanowi największą część kory mózgowej. Ta występująca wyłącznie u ssaków struktura jest odpowiedzialna m.in. za procesy poznawcze, jak pamięć, myślenie czy funkcje językowe. Naukowcy z Instytutu Molekularnej Biologii Komórki i Genetyki im. Maxa Plancka w Dreźnie oraz Instytutu Antropologii Ewolucyjnej im. Maxa Plancka w Lipsku donieśli, że u H. sapiens komórki macierzyste tej kory dłużej niż u neandertalczyków przygotowują chromosomy do podziału komórkowego. Dzięki tym dłuższym przygotowaniom w komórkach pojawia się mniej błędów. To zaś mogło mieć swoje konsekwencje dla rozwoju i funkcjonowania mózgu.

Gdy w wyniku ewolucji naszych przodków na Ziemi pojawił się człowiek współczesny, neandertalczyk i denisowianin, u jednego z nich – człowieka współczesnego – doszło do zmian w około 100 aminokwasach. Nauka nie opisała jeszcze znaczenia większości tych zmian. Jednak sześć z nich zaszło w dwóch proteinach, które odgrywają kluczową rolę w rozkładzie chromosomów podczas podziału komórkowego.

Naukowcy z Drezna i Lipska postanowili przyjrzeć się znaczeniu tych zmian dla rozwoju kory nowej. Wykorzystali w tym celu myszy, u których pozycja wspominanych aminokwasów jest identyczna, jak u neandertalczyków. Wprowadzili do organizmów zwierząt warianty aminokwasów spotykane u H. sapiens, tworząc w ten sposób model rozwoju mózgu współczesnego człowieka. Zauważyliśmy, że te trzy aminokwasy w dwóch proteinach wydłużyły metafazę, fazę podczas której chromosomy są przygotowywane do podziału komórki. W wyniku tego w komórkach potomnych występowało mniej błędów w chromosomach, podobnie jak u człowieka.

Uczeni chcieli jednak się upewnić, czy zestaw aminokwasów, jaki mieli neandertalczycy, działa odwrotnie niż aminokwasów H. sapiens. Użyli więc organoidów ludzkiego mózgu. Organoidy to rodzaj wyhodowanych w laboratorium miniaturowych wersji organów, które chcielibyśmy badać. Do takich miniaturowych organów wprowadzili zrekonstruowane sekwencje aminokwasów neandertalczyków. Okazało się wówczas, że metafaza uległa skróceniu, a w chromosomach pojawiło się więcej błędów.

Zdaniem głównego autora badań, Felipe Mory-Bermúdeza, eksperyment dowodzi, że te zmiany w aminokwasach występujących w proteinach KIF18a oraz KNL1 powodują, że u H. sapiens pojawia się mniej błędów podczas podziałek komórek mózgu niż u neandertalczyka czy szympansa. Musimy bowiem pamiętać, że błędy w rozkładzie chromosomów to zwykle nie jest dobra wiadomość. Obserwujemy je np. w takich schorzeniach jak trisomie czy nowotwory.

Nasze badania pokazują, że niektóre aspekty ewolucji i funkcjonowania ludzkiego mózgu mogą być niezależne od jego wielkości. Rozmiar mózgu neandertalczyka był podobny do naszego. Odkrycie pokazuje też, że błędy w chromosomach mogły mieć większy wpływ na funkcjonowanie mózgu neandertalczyka niż na funkcjonowanie mózgu człowieka współczesnego, stwierdził nadzorujący badania Wieland Huttner. Svante Pääbo, który również nadzorował badania zauważa, że potrzebne są kolejne prace, które wykażą, czy mniejsza liczba błędów w naszych mózgach miała wpływ na ich funkcjonowanie.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli mogli być mądrzejsi od Homo Sapiens (na co wskazują rozwinięte funkcje innowacyjności) ale częściej byli "dziwakami" od których się odwracano i ich lekceważono i wyśmiewano - choć z czasem korzystano z ich pomysłów. Zupełnie tak jak dzisiaj - wrażliwe pomysłowe osoby popychają świat do przodu, ale to tępe samce alfa zostają dyrektorami firm korzystającymi z ich odkryć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To bardzo ciekawy problem, nad którym i ja sie nieraz zastanawiałem. Być może, średnio biorąc, ten co ma wystarczająco dużo rozumu wie, że bogactwa nie zabierze do trumny i wystarczy mu żaglówka lub bilet na samolot, zamiast jachtu za mln $ i prywatnego odrzutowca. Poznawanie świata jest ciekawsze i bardziej etyczne niż władza, ale do tego trzeba rozumu. Niestety krzywa Gaussa działa, więc są i tacy i tacy. krzywa ta dotyczy również postawy moralnej. Jeśli zdarzy się (a zdarzy się na pewno) iloczyn dużego intelektu i braku empatii, to inni mają przechlapane!To własnie są chyba w większości samce alfa.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Raczej chodzi o powtarzalność działania neuronów. Neurony zmutowane to zazwyczaj neurony zepsute, nie działające w ogóle, albo w bardzo ograniczonym zakresie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wysoki odsetek ludzi cierpiących na zaburzenia ze spektrum autyzmu to skutek tego, w jaki sposób ewoluowaliśmy, uważają autorzy artykułu opublikowanego na łamach Molecular Biology and Evolution. Wielu naukowców uważa, że autyzm i schizofrenia mogą być zaburzeniami dotykającymi wyłącznie ludzi. Bardzo rzadko bowiem u zwierząt innych niż H. sapiens obserwuje się zachowania identyfikowane z tymi chorobami.
      Dzięki postępom w analizie RNA pojedynczych komórek wiemy, że komórki mózgu ssaków są bardzo zróżnicowane, a w mózgu ludzi zaszły szybkie zmiany genetyczne, których nie obserwujemy u innych ssaków.
      Autorzy najnowszych badań, Alexander L. Starr i Hunter B. Fraser z Uniwersytetu Stanforda przeanalizowali niedawno opublikowane bazy danych zawierające informacje z sekwencjonowania pojedynczych jąder komórkowych (scRNA-seq) w trzech różnych obszarach mózgu. Zauważyli, że najpowszechniej występujące w zewnętrznej warstwie mózgu neurony L2/3 IT ewoluowały u ludzi wyjątkowo szybko w porównaniu z innymi małpami. A co najbardziej zaskakujące, ta błyskawiczna ewolucja wiązała się z olbrzymimi zmianami w genach, które powiązane są z autyzmem. Prawdopodobnie cały proces napędzany był selekcją naturalną właściwą wyłącznie dla rodzaju Homo.
      Starr i Fraser uważają, że wyniki ich badań bardzo silnie wskazują, że podczas ewolucji człowieka doszło do pojawienia się genów odpowiedzialnych za autyzm. Jednak przyczyny takiej zmiany nie są jasne. Nie wiemy, jakie korzyści z tych genów mogli odnosić nasi przodkowie. Niewiele bowiem wiemy o anatomii mózgu, połączeniach między neuronami czy zdolnościach poznawczych przodków H. sapiens. Badacze spekulują, że być może geny powodujące autyzm odpowiadają też za spowolnienie rozwoju, dzięki czemu nasze mózgi po urodzeniu rozwijają się wolniej niż na przykład mózgu szympansów. Warto też zauważyć, że autyzm i schizofrenia często zaburzają właściwe człowiekowi umiejętności wytwarzania i rozumienia mowy.
      Być może geny, które powodują autyzm, dały nam korzyść w postaci spowolnienia rozwoju mózgu, co umożliwiło wykształcenie się złożonego języka oraz bardziej złożonych procesów myślowych. Nasze badania wskazują, że te same zmiany genetyczne, które spowodowały, że ludzki mózg jest unikatowy, powodują też, że jest bardziej neuroróżnorodny, mówi Starr.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu milionów lat u naszych przodków doszło do radykalnej zmiany miednicy, dzięki czemu my możemy poruszać się na dwóch nogach w postawie wyprostowanej. Przez długi czas szczegóły tej zmiany pozostawały tajemnicą, aż niedawno na łamach Nature naukowcy z USA, Wielkiej Brytanii i Irlandii opisali dwie zmiany genetyczne, które doprowadził do tej rewolucji.
      Wykazaliśmy, że w tym zakresie doszło do całkowitej zmiany mechaniki. Nie ma tutaj analogii do żadnych innych naczelnych. Wyewoluowanie czegoś zupełnie nowego, przejście od płetw do nog czy pojawienie się skrzydeł nietoperzy z palców wymaga olbrzymich zmian w rozwoju. U ludzi doszło do takich samych masowych zmian w przypadku miednicy, mówi profesor Terence Capellini z Uniwersytetu Harvarda.
      Od dawna wiadomo, że H. sapiens ma unikatową budowę miednicy. U naszych najbliższych krewniaków kości biodrowe są wysokie, wąskie i ustawione w kierunku przednio-tylnym, co pomaga w zakotwiczeniu dużych mięśni umożliwiających wspinaczkę po drzewach. U ludzi kości te obróciły się na boki i rozchyliły. Przyczepione do nich mięśnie umożliwiają przenoszenie ciężaru wyprostowanego ciała z jednej nogi na drugą.
      Po analizie dziesiątków tkanek ludzkich płodów i muzealnych okazów naczelnych, naukowcy doszli do wniosku, że ewolucja miednicy naszych przodków przebiegała w dwóch głównych etapach. Najpierw płytka wzrostu uległa obróceniu o 90 stopni, dzięki czemu kości biodrowe rosły wszerz, a nie na wysokość, a później doszło do zmian harmonogramu tworzenia kości w życiu embrionalnym.
      Na wczesnych etapach rozwoju płytka wzrostowa kości biodrowej człowieka formuje się – jak u innych naczelnych – według osi wzrostu przebiegającej od głowy do ogona. Jednak około 53. dnia rozwoju dochodzi do radykalnej zmiany. Płytki wzrostowe u ludzi obracają się prostopadle względem pierwotnej osi, co prowadzi do skrócenia i poszerzenia kości biodrowej.
      Kolejną zmianą jest harmonogram tworzenia się kości. Zwykle powstają one wokół pierwotnego centralnego ośrodka kostnienia, w środkowej części kości. Jednak w przypadku miednicy kostnienie rozpoczyna się w tylnej części kości krzyżowej i rozprzestrzenia promieniście. Kostnienie wnętrza jest opóźnione o 16 tygodni w porównaniu z innymi naczelnymi, co pozwala zachować naszej miednicy swój wyjątkowych kształt w trakcie wzrostu. Miednica o takim kształcie, jaką mamy, pojawia się w 10. tygodniu życia płodowego.
      Naukowcy zidentyfikowali ponad 300 genów, które biorą udział w utworzeniu się naszej wyjątkowej miednicy. Najważniejsze z nich to SOX9 i PTH1R, odpowiedzialne za zmianę kierunku wzrostu oraz RUNX2, który kontroluje zmianę kostnienia.
      Zdaniem autorów badań, zmiany ewolucyjne umożliwiające nam pionową postawę, rozpoczęły się między 5 a 8 milionów lat temu od reorientacji płytki wzrostowej. Natomiast proces opóźnienia kostnienia pojawił się w ciągu ostatnich 2 milionów lat. Zmiany te trwały bardzo długo, a w ich przebiegu znaczenie miały np. takie wydarzenia jak pojawienie się dużego mózgu. Ewolucja musiała „wybrać” pomiędzy dwiema korzyściami - wąską miednicą umożliwiającą sprawne poruszanie się po drzewach, a szeroką, pozwalającą na urodzenie dziecka z dużym mózgiem.
      Najstarsza skamieniała miednica, na której widać zachodzące zmiany w kierunku dwunożności i postawy wyprostowanej, należy etiopskiego Ardipiteka sprzed 4,4 milionów lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 1931 roku w grocie Magharat as-Suchul w masywie Góry Karmel w dzisiejszym Izraelu znaleziono pierwszy szkielet rodzaju Homo. Należał on do dziecka w wieku 3–5, które zmarło przed około 140 000 lat i zostało pochowane. Początkowo naukowcy nie mogli dojść do zgody, czy szkielet należał do dziecka H. sapiens, H. neanderthalensis czy też do hybrydy obu gatunków człowieka. Obecnie przyjmuje się, że to anatomicznie współczesny człowiek.
      W czasie wykopalisk niekompletna żuchwa oddzieliła się od reszty szkieletu. Została ona zrekonstruowana, ale brak środkowej części twarzy i części podstawy czaszki uniemożliwiają połączenie jej z resztą. Niedawno zespół złożony z naukowców z francuskiego Narodowego Muzeum Historii Naturalnej, Uniwersytetu w Liège oraz Uniwersytetu w Tel Awiwie podjął się ponownego zbadania szczątków dziecka, wirtualnej rekonstrukcji czaszki oraz określenia jego przynależności gatunkowej.
      Żuchwa dziecka wykazuje prymitywne cechy, z wyraźnym pokrewieństwem z neandertalczykami. Tomografia komputerowa mózgoczaszki wykazała, że sklepie jest niskie, kość potyliczna jest wydłużona ze słabo zaznaczoną płaszczyzną karkową, a otwór wielki umieszczony jest bardziej grzbietowo – w kierunku tyłu – niż u H. sapiens. To cechy charakterystyczne neandertalczyka. Jednak wirtualnie zrekonstruowany prawy błędnik kostny wykazuje współczesną budowę anatomiczną. Co więcej taki mieszany układ cech H. sapiens, neandertalczyków i elementów prymitywnych zauważono też w pozostałej części szkieletu.
      Badania sugerują zatem, że dziecko było hybrydą Homo sapiens i Homo neanderthalensis. Nie może być to całkowitym zaskoczeniem, gdyż w czasie, gdy dziecko zostało pochowane, region ten był miejscem przepływu genów pomiędzy Europą, Afryką i Azją. Jeśli więc dokonana identyfikacja jest prawidłowa, mamy tutaj do czynienia z najstarszą znaną hybrydą H. sapiens i H. neanderthalensis. Co więcej, nie wiemy, kto pochował dziecko, nie możemy więc wykluczyć, że byli to neandertalczycy. Byłby to kolejny dowód, że gatunek ten grzebał swoich zmarłych.
      Ze szczegółami można zapoznać się na łamach pisma L'Anthropologie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nieznane wcześniej organellum, odkryte wewnątrz ludzkich komórek, może zostać wykorzystane do leczenia ciężkich chorób dziedzicznych. Taką nadzieję mają jego odkrywcy, naukowcy z Wydziału Medycyny University of Virginia (UVA) oraz amerykańskich Narodowych Instytutów zdrowia (NIH). Nową strukturę nazwali „hemifuzomem”.
      Hemifuzom odgrywa duża rolę w sortowaniu, przetwarzaniu i pozbywaniu się niepotrzebnego materiału. To jak odkrycie nowego centrum recyklingu wewnątrz komórki. Sądzimy, że hemifuzom pomaga w zarządzaniu przetwarzaniem materiału przez komórkę i jeśli proces ten zostanie zaburzony, może to prowadzić do chorób, które wpływają na wiele układów w organizmie, mówi doktor Seham Ebrahim. Dopiero zaczynamy rozumieć, jak to nowe organellum wpisuje się w szerszy obraz chorób i zdrowia. To bardzo ekscytujące badania, gdyż odkrycie czegoś zupełnie nowego w komórce to rzadkość, dodaje uczona.
      Odkrycia dokonano dzięki doświadczeniu zespołu z UVA w tomografii krioelektronowej, która umożliwia „zamrożenie” komórki w czasie i dokładne przyjrzenie się jej. Uczeni sądzą, że hemifuzomy ułatwiają tworzenie się pęcherzyków wewnątrz komórki oraz organelli utworzonych z wielu pęcherzyków.
      Pęcherzyki są jak niewielkie ciężarówki wewnątrz komórki. Hemifuzom to rodzaj doku, w którym ciężarówki się łączą i przewożą swój ładunek. To etap pracy, o którym dotychczas nie mieliśmy pojęcia, dodaje Ebrahim. Mimo, że hemifuzomy dotychczas umykały uwadze naukowców, ich odkrywcy mówią, że w pewnych częściach komórki występują one zaskakująco powszechnie. Teraz uczeni chcą lepiej poznać ich rolę w prawidłowym funkcjonowaniu komórek. Gdy już wiemy, że hemifuzomy istnieją, możemy badać, jak zachowują się one w zdrowych komórkach, a co się dzieje, gdy coś pójdzie nie tak. To może prowadzić do opracowania strategii leczenia złożonych chorób genetycznych, cieszy się Ebrahim.
      Źródło: Hemifusomes and interacting proteolipid nanodroplets mediate multi-vesicular body formation, https://www.nature.com/articles/s41467-025-59887-9

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ośrodek Broki to obszar ludzkiego mózgu odpowiedzialny za generowanie mowy, ośrodek Wernickego jest obszarem, dzięki którym rozpoznajemy głoski, wyrazy i zdania. W mózgach szympansów istnieją homologiczne struktury, odziedziczone po wspólnym przodku. Teraz odkryto w nich istnienie pęczka łukowatego, wiązki włókien, łączących u ludzi ośrodki Broki i Wernickego. Nasze odkrycie pokazuje, że architektura mózgu niezbędna do pojawienia się mowy, nie powstała u ludzi. Prawdopodobnie wyewoluowała ona z wcześniej istniejącej struktury. Pęczek łukowaty u szympansów jest zdecydowanie mniej rozbudowany niż u ludzi i być może nie umożliwia generowanie złożonego ludzkiego języka, mówi główny autor badań Yannick Becker z Instytutu im. Maxa Plancka.
      Odkrycie u szympansów struktury homologicznej do pęczka łukowatego rzuca wyzwanie obecnemu rozumieniu ewolucji języka i pokazuje, że struktury potrzebne do jego wytwarzania nie pojawiły się dopiero u rodzaju Homo.
      Autorzy badań, naukowcy z Instytutu im. Maxa Plancka, francuskiego Narodowego Centrum Badań Naukowych, Taï Chimpanzee Project na Wybrzeżu Kości Słoniowej oraz Ozouga Chimpanzee Project z Gabonu, użyli rezonansu magnetycznego z wykorzystaniem dyfuzji (dMRI) do obrazowania mózgów szympansów, które z przyczyn naturalnych zmarły w niewoli i na wolności.
      We wszystkich 20 przebadanych mózgach wyraźnie było widać pęczek łukowaty. To zaś wskazuje, że struktura ta istniała przed około 7 milionami lat u wspólnego przodka człowieka i szympansa. Uzyskane wyniki zmieniają nasze rozumienie ewolucji języka i zdolności poznawczych, mówi Angela D. Friderici, dyrektor Wydziału Neuropsychologii w Instytucie Ludzkich Nauk Poznawczych i Nauk o Mózgu im. Maxa Plancka.
      Teraz, dzięki naszemu międzynarodowemu konsorcjum badawczemu, które łączy afrykańskie rezerwaty, azyle dla zwierząt i europejskie ogrody zoologiczne możemy połączyć dane dotyczące zachowania wielkich małp w czasie ich całego życia ze strukturami w mózgu. To pozwoli nam jeszcze lepiej poznać neuronalne podstawy zdolności poznawczych człowiekowatych, dodaje Becker.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...