Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy pomysł na energię z fal

Recommended Posts

Fińska firma WaveRoller opracowała nowy sposób na produkcję energii elektrycznej z fal morskich, bez konieczności umieszczania na powierzchni wody żadnych urządzeń.

Pomysł Finów polega na umocowaniu na dnie płyt wykonanych z włókna szklanego i stali. Woda przesuwa płyty w przód i w tył. One napędzają tłoki, a te z kolei wytwarzają ciśnienie poruszające turbinę elektryczną.

Znajdujące się pod wodą płyty nie psują wyglądu okolicy oraz nie przeszkadzają w żegludze. Płyty mają wysokość 4 metrów i optymalnie powinny być zanurzone na głębokości 10-12 metrów.

WaveRoller zainstalowało już dwa prototypowe urządzenia swojego pomysłu, a latem rozpoczną się testy, mające sprawdzić opłacalność technologii. Jeśli wypadną one pomyślnie, to w ciągu 5-7 lat mogą powstać liczne przybrzeżne elektrownie produkujące megawaty mocy.

Najnowszy z zainstalowanych prototypów ma wielkość 4x4 metry i będzie produkował od 10 do 13 kilowatów mocy. Podobne urządzenia stosowane na skalę komercyjną będą prawdopodobnie składały się z trzech połączonych płyt i wyprodukują około 45 kilowatów. Do produkcji megawata będą więc potrzebne 22 trzypłytowe zestawy.

Największym wyzwaniem będzie konserwacja i naprawa urządzeń.

Share this post


Link to post
Share on other sites

Hmmm...

 

Z dwojga złego wolałbym chyba jasno oznaczone obiekty pływające. Nie każda elektrownia pływowa musi przeciez stać w miejscu ekologicznie cennym, gdzie postawienie boi na wodzie szpeciłoby nieprawdopodobnie krajobraz. A dodatkowo taka boja mogłaby służyć np. jako dodatkowy, naziemny nadajnik GPS (jest taka technologia, nie pamiętam jej dokładnej nazwy), nadajnik radiowy, latarnia i tysiąc pięćset innych rzeczy. Tymczasem ukryte pod woda płyty byłyby nie tylko zagrożeniem dla żeglugi, ale także dla fauny. Jakoś nie podchodzi mi ten pomysł...

Share this post


Link to post
Share on other sites

Skóra cierpnie na myśl o spustoszeniu w strefie strądu, gdyby wygaszono fale. Na szczęście już na pierwszy rzut oka pomysł jest niepraktyczny. Szczególnie właśnie z uwagi na wspomnianą pod koniec naprawę i konserwację.

Share this post


Link to post
Share on other sites

Pomysł mi się podoba tylko należałoby zadbać żeby woda wracająca od brzegu nie przemieszczała się wzdłóż (stosować długie ciągi tych paneli) , obawiam się że zostaną zamulone piaskiem i sztorm może je na brzeg wyrzucić. 8)

 

Już lepsze byłyby folie piezoelektryczne pływające na wodzie odzwierciedlające falę, rozkładające wodę na tlen i wodór (odbudowa atmosfery, dotlenienie wody). 8)

Share this post


Link to post
Share on other sites

Już lepsze byłyby folie piezoelektryczne pływające na wodzie odzwierciedlające falę, rozkładające wodę na tlen i wodór (odbudowa atmosfery, dotlenienie wody). 8)

 

I całkowite wyłączenie owych powierzchni z żeglugi, odizolowanie wody (hydrosfery) od powietrza (atmosfery) i wiążąca się z tym nie możność przechodzenia/przenikania pomiędzy tymi środowiskami (chociażby ptaki polujące na ryby) i wiele innych.. Kompletna utopia, mam nadzieję że żartowałeś z tą folią

Share this post


Link to post
Share on other sites

Ta folia byłaby w obszarach gdzie są fale czyli  przy brzegach mogłaby stanowić nawet (przy odrobinie pomyślunku) pływającą bazę lęgową. Mogłaby znajdować się w terenach bez żeglugowych , i wcale nie musi ciągła . 8)

Share this post


Link to post
Share on other sites
i wcale nie musi ciągła . 8)

Oczywiście. A ptaki, odczytując informacje z PM, omijałyby znaki opisane po polsku znaki informujące, że w tym miejscu jest folia i są uprzejmie proszone o polowanie na ryby w innych miejscach.

Share this post


Link to post
Share on other sites
i wcale nie musi ciągła . 8)

Oczywiście. A ptaki, odczytując informacje z PM, omijałyby znaki opisane po polsku znaki informujące, że w tym miejscu jest folia i są uprzejmie proszone o polowanie na ryby w innych miejscach.

 

A gdyby te uparte ptaszyska nie chciały się dostosować do znaków i przepisów, przed sąd je i do więzienia  ;D

Share this post


Link to post
Share on other sites
A gdyby te uparte ptaszyska nie chciały się dostosować do znaków i przepisów, przed sąd je i do więzienia 

 

No coś ty, przecież to i ich świat. W dotlenionej wodzie będzie wiecej ryb. 8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy poinformowali o zarejestrowaniu najwyższej fali morskiej na południowej półkuli. Podczas silnego sztormu na Oceanie Południowym w pobliżu należącej do Nowej Zelandii Wyspy Campbella boja zarejestrowała falę o wysokości 23,8 metra. Oceanograf Tom Durrant mówi, że poprzedni rekord należał do zarejestrowanej w 2012 roku fali o wysokości 22,03 metra.
      O ile nam wiadomo, to najwyższa fala zarejestrowana na półkuli południowej, mówi Durrant i dodaje, że Ocean Południowy jest tym miejscem, na którym powstają obiegające całą planetę martwe fale. Surferzy w Kalifornii będą mogli za około tydzień skorzystać z energii właśnie zanotowanej fali, stwierdza uczony.
      Zdaniem Durranta podczas wspomnianego sztormu mogły powstawać fale o wysokości przekraczającej 25 metrów, jednak boja badawcza ich nie zarejestrowała.
      Wspomniana boja została zainstalowana w marcu. Jej zadaniem jest rejestrowanie ekstremalnych zjawisk na Oceanie Południowym. Aby na jak najdłużej zachować energię w akumulatorach pracuje ona jedynie przez 20 minut co trzy godziny. Bardzo prawdopodobne, że najwyższe fale powstawały, gdy boja nie pracowała, wyjaśnia Durrant.
      Najwyższa zarejestrowana fala w historii miała wysokość 30,5 metra. Pojawiła się ona w 1958 roku w Zatoce Lituya na Alasce po tsunami wywołanym trzęsieniem ziemi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Użytkownicy smartfonów, którym zależy na dłuższej pracy na pojedynczym ładowaniu baterii powinni zastanowić się nad częstszym używaniem... płatnych wersji oprogramowania. Abhinav Pathak i Charlie Hu z Purdue University oraz Ming Zhang z Microsoft Research odkryli, że bezpłatne aplikacje zużywają niezwykle dużo energii.
      Badacze stworzyli program Eprof, który bardzo szczegółowo opisuje zużycie energii przez urządzenie podczas używania różnych aplikacji. Następnie sprawdzili za jego pomocą smartfony z systemami Android i Windows Phone. Okazało się, że bezpłatne oprogramowanie, takie jak np. Angry Birds, Free Chess, Facebook i NYTimes na potrzeby swoich zasadniczych funkcji wykorzystuje jedynie 10-30 procent zużywanej energii. Na przykład Angry Birds używają tylko 20% wykorzystywanej energii na obsługę gry, a 45% jest zużywane na określenie lokalizacji użytkownika przez GPS oraz ładowanie odpowiednich reklam przez 3G. Łącze 3G pozostaje otwarte przez około 10 sekund po zakończeniu transmisji, co zużywa kolejne 28% energii.
      Eprof wykazał też, że takie marnotrawstwo energii jest związane z błędami niechlujnie napisanym kodem do zarabiania na bezpłatnych programach.
      Badacze udowodnili, że wilk może być syty i owca cała - poprawili kod w czterech programach, zmniejszając konsumpcję energii od 20 do 65 procent.
    • By KopalniaWiedzy.pl
      Inżynierowie z Pennsylvania State University połączyli dwie technologie pozyskiwania energii - biochemiczne ogniwa paliwowe wykorzystujące mikroorganizmy oraz odwróconą elektrodializę - dzięki czemu udało się oczyścić ścieki dzięki energii pozyskanej z nich samych. Co więcej, powstała też nadmiarowa energia, którą można odprowadzić do sieci.
      Profesor Bruce E. Logan, który nadzorował badania, mówi, że ich celem jest doprowadzenie do sytuacji, w której systemy dostarczania wody i odprowadzania ścieków będą energetycznie samowystarczalne. Zdaniem Logana miejskie ścieki mają kolosalny potencjał energetyczny. Można z nich pozyskać nawet 9-krotnie więcej energii niż potrzeba do ich oczyszczenia. Nie trzeba dużo myśleć, by dojść do wniosku, że cały proces można uczynić przynajmniej neutralnym pod względem zużycia energii - stwierdził uczony.
      Połączenie ogniwa biochemicznego i odwróconej elektrodializy pozwoliło na przezwyciężenie słabości obu tych technologii.
      Ogniwo biochemiczne składa się z dwóch komór przedzielonych półprzepuszczalną membraną, którą protony mogą przenikać tylko w jedną stronę. Wystarczy wsadzić elektrody do komór, by uzyskać baterię. Do jednej z elektrod należy przyczepić mikroorganizmy rozkładające molekuły organiczne. Z ich rozkładu powstają prostsze molekuły oraz protony i elektrony. Protony przechodzą przez membranę, tworząc potencjał pomiędzy obiema komorami, a elektrony przepływają poprzez elektrodę do sąsiedniej komory, gdzie łączą się z protonami i tlenem, tworząc wodę.
      Odwrócona elektrodializa również korzysta z przepływu jonów, jednak działa dzięki różnej ich koncentracji. Do pracy wymaga dwóch membran - jednej pozwalającej na przepływ jonów ujemnych, drugiej umożliwiającej przepływ jonów dodatnich. Całość trzeba zatem podzielić na trzy komory. Jeśli np. do środkowej wlejemy wodę morską, a do bocznych słodką, to jony przenikną przez odpowiednie membrany, w wyniku czego jedna z bocznych komór będzie naładowana dodatnio, druga - ujemnie.
      Obie te metody nie są pozbawione wad. Biochemiczne ogniwo paliwowe pozwala na uzyskanie niewielkiej mocy, a odwrócona elektrodializ działa, gdy połączymy co najmniej 20 par membran, co jest kosztownym przedsięwzięciem.
      Dzięki połączeniu obu technologii liczbę par membran w systemie odwróconej elektrodializy zmniejszono do 5, jednocześnie zwiększając 7-krotnie moc uzyskiwaną z ogniwa biochemicznego.
      Kluczowym elementem całości jest użycie w miejsce wody morskiej wodorosoli amonowej kwasu węglowego (NH4HCO3). Sól tę można odzyskiwać z roztworu po podgrzaniu go do nieco ponad 40 stopni Celsjusza, co oznacza, że można poddawać ją recyklingowi wykorzystując ciepło odpadowe całego procesu.
      Największym problemem stojącym przed zespołem Logana jest przeskalowanie urządzenia tak, by można było przeprowadzić testy w istniejących systemach wodociągowych.
    • By KopalniaWiedzy.pl
      Opadające krople deszczu trą o powietrze, przez co energia kinetyczna zarówno kropli jak i powietrza zamieniana jest w energię cieplną i zostaje rozproszona. Grupa matematyków policzyła ilość rozpraszanej w ten sposób energii i ze zdumieniem odkryła, że opady deszczu mogą być bardzo istotnym składnikiem ogólnego bilansu energetycznego atmosfery.
      Matematycy Olivier Pauluis z New York University oraz Juliana Dias z Narodowej Administracji Oceanów i Atmosfery (NOAA) wykorzystali dane uzyskane przez program Tropical Rainfall Measurement Mission (TRMM). Z ich obliczeń wynika, że pomiędzy 30. stopniem szerokości północnej a 30. stopniem szerokości południowej, rozproszenie energii wskutek tarcia kropli deszczu o powietrze średnio 1,8 wata na metr kwadratowy. Spadające krople wody i kryształki lodu stanowią minimalną część masy atmosfery, jednak, jak się okazuje, prowadzą do rozproszenia olbrzymich ilości energii.
      Specjaliści przewidują, że w miarę jak klimat będzie się ocieplał, opady staną się bardziej intensywne. Co więcej krople będą miały dłuższą drogę do przebycia, gdyż para wodna będzie kondensowała na większych wysokościach. Pauluis uważa, że na każdy stopień wzrostu temperatury ilość rozpraszanej energii wzrośnie o kilka procent. Wyliczenia te są zgodne z wcześniejszymi modelami klimatycznymi. Spodziewamy się, że wraz ze wzrostem temperatury wielkoskalowe cyrkulacje powietrza w tropikach, takie jak komórka Hadleya czy komórka Walkera osłabną - mówią uczeni. Można zatem spodziewać się osłabnięcia pasatów, które są częścią obu komórek.
      Nie osłabną za to huragany. Są one bowiem zależne nie od energii zgromadzonej w atmosferze a od temperatury powierzchni oceanów. Eksperci zapowiadają wzrost siły tych wiatrów.
×
×
  • Create New...