Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

NASA próbuje rozwiązać zagadkę dziwnych sygnałów nadchodzących z Voyagera 1
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Inżynierowie z NASA naprawili sondę Voyager 1. Jak informowaliśmy w maju, sonda, znajdująca się w odległości ponad 23 miliardów kilometrów od Ziemi, zaczęła przysyłać nieprawidłowe dane. Były one wysyłane z systemu AACS, do którego od 45 lat należy kontrola nad prawidłową orientacją pojazdu. Jednym z jego zadań jest dopilnowanie, by antena Voyagera była skierowana dokładnie na Ziemię. Wszystko działało prawidłowo, jednak odczyty z AACS nie oddawały tego, co rzeczywiście dzieje się z sondą.
Sygnał z Voyagera 1 nie tracił mocy, co wskazywało, że antena jest precyzyjnie ustawiona w stronę Ziemi. Dane przysyłane z AACS czasem wyglądały na generowane losowo, innymi razy nie oddawały żadnego stanu, w jakim urządzenie mogło się znaleźć. Jakby tego było mało, błąd w AACS nie uruchomił żadnego z zabezpieczeń Voyagera. Po miesiącach pracy inżynierowie w końcu znaleźli źródło problemu. Okazało się, że AACS zaczął przesyłać dane za pośrednictwem komputera, który przestał pracować wiele lat temu. I to ten komputer uszkadzał dane.
NASA nie zna natomiast samej przyczyny błędy. Nie wiadomo, dlaczego AACS zaczął przesyłać dane tą drogą. Susanne Dodd, odpowiedzialna za Voyagera, podejrzewa, że stało się tak w momencie, gdy centrum kontroli nakazało Voyagerowi przesyłanie danych przez jeden z dobrze działających komputerów. Niewykluczone, że komenda ta została zniekształcona przez komputer, który przekierował dane z AACS do wadliwej maszyny. Jeśli tak, to oznacza, że któryś ze znajdujących się na pokładzie Voyagera elementów wygenerował błąd. A inżynierowie nie wiedzą jeszcze, który to element. Specjaliści nie ustają w poszukiwaniu źródła problemów, jednak w tej chwili wygląda na to, że misja Voyagera nie jest zagrożona.
Jesteśmy szczęśliwi, że telemetria wróciła. Dokonamy teraz pełnego przeglądu układów pamięci AACS i przeanalizujemy wszystko, co system ten robił. To powinno tam pomóc w odnalezieniu przyczyny problemu. Jesteśmy optymistami, chociaż przed nami jeszcze dużo pracy, dodaje Dodd.
Voyager 1 i Voyager 2 pracują już przez 45 lat. To znacznie dłużej niż pierwotnie planowano. Oba pojazdy znajdują się już w przestrzeni międzygwiezdnej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 2018 roku amerykańscy astronomowie pracujący przy radioteleskopie EDGES w Australii poinformowali o odkryciu sygnału radiowego o szczególnej częstotliwości. Był on znacząco słabszy od innych sygnałów. Wyniki swoich badań opublikowali na łamach Nature, gdzie ogłosili, że znaleziony sygnał pochodzi z narodzin pierwszych gwiazd po Wielkim Wybuchu. Co więcej, dane były inne, niż przewidziane przez teoretyków. Wskazywały one, że wczesny wszechświat był zadziwiająco chłodny. Teoretycy siedli do pracy, by to wyjaśnić, a inne zespoły ruszyły do teleskopów, by potwierdzić istnienie sygnału.
Wśród tych, którzy postanowili zarejestrować sygnał zauważony przez Amerykanów byli naukowcy z Raman Research Institute w Bangalore w Indiach. Wykorzystali oni radioteleskop SARAS-3. Niewielkie urządzenie pływa na dwóch jeziorach w odległych regionach Indii. Indyjscy naukowcy zebrali dane i przez ostatnie dwa lata szczegółowo je analizowali. Właśnie poinformowali na łamach Nature Astronomy, że w danych nie znaleziono żadnego śladu sygnału, o którym pisali Amerykanie.
Jeśli tam by coś było, to by to zauważyli, mówi radioastronom Aaron Parsons z Uniwersytetu Kalifornijskiego w Berkeley. Nie ma tutaj zbytnio miejsca na wątpliwości, dodaje uczony, który nie był zaangażowany w żadne z opisywanych badań.
Judd Bowman, który stoi na czele zespołu badawczego teleskopu EDGES i kierował badaniami sprzed 4 lat dodaje, że konieczne są dalsze prace, by rozstrzygnąć, kto ma rację. Biorąc pod uwagę, jak trudne są tego typu obserwacja, czeka nas sporo pracy. Musimy włączyć te badania w te wciąż prowadzone.
Zarówno EDGES jak i SARAS usiłowały wykryć emisję pochodzącą z wodoru. Pierwiastek ten w sposób naturalny absorbuje i emituje fale radiowe o długości 21 centymetrów. Na trasie swojej podróży w kierunku Ziemi fale te coraz bardziej się rozciągają. Fale z bardziej odległych chmur wodoru są rozciągnięte bardziej, niż te z chmur bliższych. A topień ich rozciągnięcia świadczy o tym, z jakie odległości – czyli i z jakiego czasu – pochodzą.
Astronomowie już od ponad 50 lat wykorzystują emisję wodoru do badania pobliskich galaktyk. Jednak dzięki postępowi technologicznemu takie instrumenty jak EDGES i SARAS mogą rejestrować też fale pochodzące z większych odległości, bardziej rozciągnięte, które trudniej jest badać, gdyż zakłócają je naturalne i sztuczne sygnały z Ziemi.
Gdy atomy wodoru dopiero powstawały po Wielkim Wybuchu, absorbowały i emitowały tyle samo promieniowania o długości fali 21 centymetrów. Przez to chmury wypełniającego wszechświat wodoru były niewidoczne.
Później zaś nastąpił kosmiczny świt. Promieniowanie ultrafioletowe z pierwszych gwiaz wzbudziło atomy wodoru, przez co mogły one absorbować więcej promieniowania niż pochłaniały. Zjawisko to, obserwowane obecnie z Ziemi, powinno objawiać się nagłym spadkiem jasności fal o określonej długości. Ten spadek wyznacza moment powstania pierwszych gwiazd. Z czasem te pierwsze gwiazdy zapadły się w czarne dziury. Gorący gaz z dysków wokół czarnych dziur emitował promieniowanie rentgenowskie. Podgrzało ono wodór, zwiększając jego emisję w paśmie 21 centymetrów. To zaś objawia się zwiększeniem jasności fal o minimalnie mniejszej długości niż wcześniejsze fale. Wynik netto tych zmian, to spadek jasności w wąskim zakresie fal. Taki właśnie spadek spodziewali się wykryć naukowcy pracujący przy EDGES.
Znaleźli jednak coś innego. Spadek dotyczyły fal o długości 4 metrów. Analiza takich danych wskazywała, że pierwsze gwiazdy powstały zadziwiająco szybko i szybko doszło do pojawienia się promieniowania X. Co więcej, dane pokazywały też, że wodór we wczesnym wszechświecie był chłodniejszy niż przewidywały teorie.
Pojawiły się różne próby wyjaśnienia tego zjawiska. Wiadomo też było, że zakłócenia do sygnału może wprowadzać sam radioteleskop i jego konstrukcja. Edges otoczony jest przez duży, 30-metrowy metalowy ekran, który ma blokować emisję radiową pochodzącą z gruntu. Amerykański zespół uwzględnił w swojej pracy możliwość pojawienia się zakłóceń pochodzących z krawędzi tego ekranu. Jednak specjaliści zwracają uwagę, że wystarczy niewielki błąd w korekcie, by w analizie pojawiły się dane nie do odróżnienia od danych rzeczywistych.
Naukowcy z Bangalore zaprojektowali swój radioteleskop tak, by był on bardziej odporny na zakłócenia. Dodatkowo umieścili go na jeziorze, dzięki czemu zyskali pewność, że w promieniu 100 metrów od teleskopu nie pojawią się żadne odbicia horyzontalne. Sama zaś woda jeziora powodowała, że odbite od dna sygnały biegły wolniej, a dzięki jednorodnej gęstości wody łatwiej modelować całe otoczenie teleskopu i wyławiać z danych fałszywe sygnały.
Dzięki temu naukowcom pracującym przy SARAS udało się dokładnie przeanalizować całe spektrum wokół fal o długości 4 metrów i stwierdzić, że nie widać w nim żadnego spadku jasności zarejestrowanego przez EDGES.
Cynthia Chiang, radioastronom z kanadyjskiego McGill University stwierdziła, że oba zespoły naukowe – amerykański i indyjski – bardzo dobrze i ostrożnie przeprowadziły wszelkie prace nad kalibracją urządzeń i analizą danych, dlatego też jest obecnie zbyt wcześnie, by orzekać, który z nich ma rację.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dziwny powtarzający się sygnał radiowy dobiegający z okolic centrum Drogi Mlecznej nie przypomina żadnego innego znanego sygnału. Ma zupełnie inną sygnaturę. Jak wynika z wyników badań zaakceptowanych do publikacji w The Astrophysical Journal i udostępnionych na arXiv [PDF], źródło sygnału przez wiele tygodni jest bardzo jasne w paśmie radiowym, a następnie zanika w ciągu jednego dnia
Takie zachowanie się sygnału radiowego nie pasuje do żadnego znanego obiektu niebieskiego. Dlatego też naukowcy z Australii, USA, Niemiec, Kanady, Hiszpanii, Francji i RPA, którzy badali to zjawisko za pomocą Australian SKA Pathfinder, przypuszczają, że mogli odkryć nową klasę obiektów kosmicznych.
Tajemniczy sygnał ASKAP J173608.2−321635 jest wysoce spolaryzowany i wysoce zmienny. Na potrzeby badań obserwowano go pomiędzy kwietniem 2019 a sierpniem 2020 roku. W tym czasie pojawił się 13 razy. Nigdy nie trwał dłużej niż kilka tygodni. Źródło jest bardzo zmienne, pojawia się i znika nagle, bez żadnego wzorca, który udałoby się odczytać.
Badacze próbowali dopasować ten sygnał do danych z wielu innych teleskopów, w tym do Chandra X-ray Observatory, Neil Gehrels Swift Observatory czy Visible and Infrared Survey Telescope for Astronomy. W żadnym nie znaleziono niczego, co przypominałoby ASKAP J173608.2−321635. Wygląda więc na to, że źródło nie emituje niczego w innych częstotliwościach spektrum elektromagnetycznego. Naukowcy nie potrafią wyjaśnić takiego zjawiska.
Autorzy badań piszą, że co prawda gwiazdy o małej masie mogą okresowo generować rozbłyski w paśmie radiowym, jednak zwykle towarzyszy im emisja w paśmie promieniowania rentgenowskiego. Nic nie wskazuje też na to, by źródłem mogły być pulsary lub magnetary. Pulsary emitują silne sygnały radiowe, ale jest to emisja o przewidywalnym okresie i nie trwa całymi tygodniami. Z kolei magnetary charakteryzuje też silna emisja w zakresie rentgenowskim.
Z wszystkich znanych źródeł emisji sygnał ASKAP J173608.2−321635 najbardziej przypomina tajemnicze GCRT (Galactic Center Radio Transient). Dotychczas znamy trzy tego typu obiekty. Również i one znajdują się w kierunku centrum naszej galaktyki, wszystkie nagle rozpoczynają emisję w paśmie radiowym i równie gwałtownie ją kończą. Mają też podobną jasność i nigdy nie towarzyszy im promieniowanie rentgenowskie. Jednak pojawiają się i znikają szybciej niż ASKAP J173608.2−321635. Niewykluczone zatem, że źródło ASKAP J173608.2−321635 jest w jakiś sposób powiązana z GCRT, a być może również jest takim obiektem.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.