Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Pracujący z amerykańskim Narodowym Instytutem Zdrowia naukowcy donoszą o stworzeniu nowej metody, która pozwala na zbadanie zawartości tlenu w guzie nowotworowym bez uzyskiwania bezpośredniego dostępu do jego wnętrza. Technologia ta ma szansę stać się ważnym krokiem naprzód, pozwalającym na optymalizację terapii u indywidualnych pacjentów. Może to mieć bezpośredni wpływ na ogólną skuteczność leczenia wielu typów nowotworów.

Dlaczego badanie poziomu tlenu w guzie jest tak ważne? Jest to istotne przede wszystkim podczas planowania radioterapii. Stosowane w tej procedurze promieniowanie ma na celu uszkodzenie DNA chorych komórek i w efekcie ich zabicie. Przeważnie nie dzieje się to jednak bezpośrednio, lecz właśnie za pośrednictwem tlenu i jego związków. Cząsteczki tego życiodajnego gazu rozpadają się pod wpływem uderzających w nie fal na tzw. wolne rodniki, które trwale uszkadzają DNA komórek. Z tego powodu dokładna znajomość ilości tlenu w nowotworze może być istotna podczas decyzji o wyborze odpowiedniego leczenia.

Kolejnym powodem, dla którego pomiar stężenia tlenu jest tak bardzo istotny, jest jego wpływ na złośliwość guza. Udowodniono bowiem, że guzy wysycone tlenem w mniejszej ilości mają znacznie wyraźniejszą tendencję do tworzenia przerzutów. Są także trudniejsze do usunięcia, gdyż żyjąc długo w stanie niedotlenienia, "zahartowały się" i nabrały oporności na wiele typów terapii. Obniżona ilość tlenu zmniejsza także podatność guza na chemioterapię, lecz mechanizm tego zjawiska nie jest do końca zrozumiały.

Obecnie lekarze są w stanie zbadać ilość tlenu w chorej tkance wyłącznie poprzez bezpośredni pomiar pobranego wycinka. Jest to metoda prosta i tania, lecz, niestety, często nieosiągalna (np. wtedy, gdy guz jest położony zbyt głęboko). Z odsieczą przybyli specjaliści z zakresu fizyki medycznej i diagnostyki obrazowej. Stworzyli oni system łączący dwie techniki badania metodą rezonansu magnetycznego, który ma szansę zrewolucjonizować proces planowania leczenia nowotworów.

Na wspomniany tandem składają się dwa rodzaje badań: elektronowy rezonans paramagnetyczny oraz jądrowy rezonans magnetyczny. Pierwsza z nich pozwala wykryć związki z nieparzystą liczbą elektronów, czyli wolne rodniki. To właśnie one bezpośrednio uszkadzają DNA, prowadząc tym samym do śmierci komórki. Z kolei jądrowy rezonans magnetyczny to technika pozwalająca na określenie rozmieszczenia atomów poszczególnych pierwiastków w organizmie. Połączony obraz z obu tych badań pozwala określić, ile tlenu znajduje się w nowotworze oraz jaka jest jego zdolność do wytwarzania toksycznych dla DNA wolnych rodników. To z kolei pozwala przewidzieć, jak skuteczna będzie radioterapia w niszczeniu nieprawidłowych komórek.

Dr Mark Dewhirst, profesor specjalizujący się w tematyce radioterapii onkologicznej, komentuje odkrycie następująco: Obrazowanie opisane w tym badaniu dostarcza wszelkich informacji pozwalających na ocenę poziomu tlenu w guzach, a także umożliwia ocenę przyczyn jego ewentualnego niedoboru w nowotworze. W związku z tym, że technika jest całkowicie nieinwazyjna dla pacjenta, można ją wykonywać wielokrotnie i w ten sposób oceniać na bieżąco skuteczność leczenia.

Niestety, istnieją też spore problemy związane z rozwojem tej technologii. Najważniejszy z nich wynika z faktu, że dotychczas urządzenie testowano wyłącznie na myszach, co może przynieść problemy przy próbie "przeniesienia" badań na człowieka. Z tego powodu niezbędne jest przeprowadzenie jeszcze wielu testów na różnych gatunkach zwierząt, by w końcu, jeśli wszystko dobrze pójdzie, uruchomić testy na pacjentach.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Żelazne nanodruciki z lekami można doprowadzać do zmian nowotworowych za pomocą zewnętrznego pola magnetycznego. Później wystarczy aktywować 3-elementowy proces zabijania zmienionych chorobowo komórek.
      Nad rozwiązaniem pracowali m.in. naukowcy z Uniwersytetu Nauki i Techniki Króla Abdullaha (KAUST).
      Żelazo jest pierwiastkiem niezbędnym do życia (zarówno dla ludzi, jak i dla zwierząt). Ten pierwiastek śladowy wchodzi w skład białek i enzymów, np. hemoglobiny czy enzymów cyklu Krebsa. Jak zauważa Jürgen Kosel z KAUST, dzięki cechom magnetycznym nanocząstki tlenku żelaza znalazły zastosowanie jako środki kontrastowe w obrazowaniu techniką rezonansu magnetycznego (MRI).
      Materiały zawierające żelazo są biokompatybilne. Za pomocą nieszkodliwego pola magnetycznego możemy je transportować i koncentrować w wybranym obszarze, obracać lub wprawiać w drgania, tak postąpiliśmy w naszym studium, a także wykrywać za pomocą MRI - opowiada Aldo Martínez-Banderas.
      Przykładając pole magnetyczne o niskiej mocy, zespół wprawiał nanodruciki w drgania; zjawisko to prowadziło do powstawania otworów w błonie komórkowej.
      Druciki, w których rdzeń z żelaza jest powleczony tlenkiem żelaza, świetnie absorbują podczerwień i się podgrzewają. Ponieważ światło o tej długości penetruje w głąb tkanek, nanodruciki można podgrzewać laserami skierowanymi w miejsce guza. Wykazano, że wydajność konwersji fototermicznej przekraczała 80%, co przekładało się na dużą wewnątrzkomórkową dawkę ciepła.
      Za pomocą wrażliwych na pH łączników do nanodrucików rdzeń/otoczka "mocowano" cytostatyk doksorubicynę. Jako że środowisko guza jest zazwyczaj bardziej kwaśne niż zdrowa tkanka, łącznik wybiórczo rozkłada się w lub w pobliżu komórek nowotworowych, uwalniając lek dokładnie tam, gdzie jest potrzebny. Terapia łączona skutkowała niemal całkowitą ablacją komórek nowotworowych i była skuteczniejsza niż pojedyncze terapie - podkreśla Martínez-Banderas.
      [...] Możliwości żelaznych nanomateriałów sprawiają, że wydają się one bardzo obiecujące, jeśli chodzi o tworzenie biomedycznych nanorobotów - podsumowuje Kosel.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Testy tysięcy nieonkologicznych leków (substancji leczniczych), które przeprowadzono na 578 liniach ludzkich komórek nowotworowych, doprowadziły do nieoczekiwanego odkrycia: niemal 50 z nich miało właściwości przeciwnowotworowe. Były wśród nich leki do terapii cukrzycy, uzależnienia od alkoholu, a nawet zapalenia stawów u psów.
      Zaskakujące odkrycie zespołu z MIT-u i Uniwersytetu Harvarda (Broad Institute) oraz Dana-Farber Cancer Institute pomogło też zidentyfikować nowe mechanizmy działania i cele dla leków.
      Myśleliśmy, że będziemy mieli szczęście, jeśli znajdziemy choć jedną substancję o właściwościach przeciwnowotworowych, a ku swemu zaskoczeniu wykryliśmy ich tak wiele - podkreśla prof. Todd Golub.
      Wyniki badań ukazały się w piśmie Nature Cancer. To największe jak dotąd studium z wykorzystaniem Drug Repurposing Hub; na zbiór ten składa się ponad 6000 leków i substancji leczniczych, które albo zostały zatwierdzone przez FDA, albo okazały się bezpieczne w czasie testów klinicznych (w okresie prowadzenia badań Hub składał się z 4518 leków).
      Naukowcy testowali wszystkie substancje z Drug Repurposing Hub na 578 liniach ludzkich komórek nowotworowych z Cancer Cell Line Encyclopedia (CCLE). Naukowcy uciekli się do genetycznego metkowania (DNA barcoding) metodą PRISM; opracowano ją w laboratorium Goluba. Dzięki temu można było badać kilka linii naraz, przyspieszając eksperyment.
      Każdą większą pulę metkowanych komórek wystawiano na oddziaływanie pojedynczej substancji z Drug Repurposing Hub i mierzono przeżywalność komórek nowotworowych.
      W ten sposób znaleziono niemal 50 nieprzeciwnowotworowych leków, w tym takich, które pierwotnie opracowano do obniżania poziomu cholesterolu lub zmniejszania stanu zapalnego, zabijających pewne komórki nowotworowe (nie szkodziły one przy tym innym komórkom).
      Niektóre związki uśmiercały komórki nowotworowe w nieoczekiwany sposób. Większość leków przeciwnowotworowych działa, blokując białka, my zaś odkryliśmy substancje, które działają za pośrednictwem innych mechanizmów - opowiada Steven Corsello. Część nie hamuje białek, ale je aktywuje albo stabilizuje interakcje białko-białko. Zauważono np., że prawie 12 nieonkologicznych leków zabija komórki nowotworowe, w których zachodzi ekspresja białka PDE3A, stabilizując interakcję między PDE3A a innym białkiem SLFN12.
      Większość nieonkologicznych leków uśmiercających komórki nowotworowe działała za pośrednictwem nieznanych celów molekularnych. Przeciwzapalna tepoksalina, którą opracowano z myślą o ludziach, ale później dopuszczono do leczenia zapalenia stawów u psów, zabijała komórki nowotworowe, "uderzając" w nieznany cel w komórkach z nadmierną ekspresją białka MDR1 (glikoproteina P jest markerem oporności wielolekowej).
      Ostatecznie naukowcy potrafili przewidzieć, czy dany lek może zabić jakąś linię komórkową, przyglądając się jej cechom genetycznym, takim jak mutacje czy poziom metylacji, zapisanym w bazie CCLE. To zaś oznacza, że pewnego dnia cechy te mogą zostać wykorzystane jako biomarkery do identyfikacji pacjentów, którzy z najwyższym prawdopodobieństwem skorzystają z jakichś leków. Zauważano np., że stosowany w leczeniu alkoholizmu disulfiram zabijał linie komórkowe z mutacjami powodującymi ubytek metalotionein (MT). Związki zawierające wanad, które pierwotnie opracowano do terapii cukrzycy, działały z kolei na komórki nowotworowe z ekspresją transportera siarczanu SLC26A2.
      Zespół chciałby przetestować związki z Drug Repurposing Hub na większej liczbie linii komórkowych i rozbudować sam Hub. Akademicy podkreślają, że zdobyte dotąd dane będą dalej analizowane.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Największe na świecie badania raf koralowych pozwoliły na określenie które rafy i w jaki sposób można uratować, informują naukowcy z WCS (Wildlife Conservation Society), wielu organizacji pozarządowych, agend rządowych oraz uniwersytetu. Dzięki nim opracowano trzy strategie, które mają zostać szybko wdrożone w celu ratowania raf.
      W najnowszym numerze Nature Ecology and Evolution opublikowano wyniki badań prowadzonych przez ponad 80 naukowców na ponad 2500 rafach na oceanach Indyjskim i Spokojnym.
      Dobra wiadomość jest taka, że wciąż istnieją dobrze funkcjonujące żywe rafy koralowe i nie jest za późno, by je ocalić. Możemy uratować dla przyszłych pokoleń ostatnie istniejące rafy, które zostały dotknięte zmianami klimatu. Jednak tam, gdzie doszło do dużej degeneracji raf, nadbrzeżne społeczności będą musiały znaleźć sobie w przyszłości inne źródło utrzymania, mówi główna autorka badań i szefowa prowadzonego przez WCS programu monitorowania raf, doktor Emily Darling.
      Fakt, że można uratować część raf to dobra wiadomość. W regionie indopacyficznym znajduje się wielka różnorodność raf, niestety od ponad 20 lat w regionie tym coraz częściej dochodzi do incydentów masowego blaknięcia raf.
      Dzięki badaniom udało się zidentyfikować trzy główne strategie zachowania raf koralowych. Pierwsza z nich polega na ich ochronie. Okazało się, że 17% badanych raf dobrze sobie radziło i były to rafy, których nie dotknęły niekorzystne zjawiska z lat 2014–2017 związane z El Niño. Znajdują się one na wodach przybrzeżnych 22 krajów, od Wschodniej Afryki po Azję Południowo-Wschodnią. Można je ocalić koordynując działania na skalę międzynarodową. Druga ze strategii polega na odradzaniu uszkodzonych raf. Mogłaby one objąć 54% badanych raf. To rafy, które jeszcze niedawno dobrze funkcjonowały, jednak dotknęło je masowe blaknięcie z lat 2014–2017. Strategia trzecia to zmiana stylu życia lokalnych społeczności. Aż 28% raf koralowych przestało funkcjonować, a ludzie, którzy są od nich uzależnieni muszą znaleźć inne źródła utrzymania.
      Autorzy badań podkreślają, że niezwykle istotne jest prawidłowe zarządzanie rafami na szczeblu lokalnym, tworzenie obszarów chronionych i inne ograniczenia w ich eksploatacji, ale nie może to zastępować działań globalnych. Ocalenie raf będzie wymagało prowadzenia działań na szczeblu lokalnym i globalnym. Należy z jednej strony ograniczać zależność lokalnych społeczności od raf tak, by rafy były mniej eksploatowane, z drugiej zaś strony należy prowadzić działania zmierzające do utrzymania globalnego ocieplenie na poziomie poniżej 1,5 stopnia Celsjusza od okresu preindustrialnego", mówi doktor Tim McClanahan.
      Utrzymanie się raf koralowych zależy w dużej mierze od ograniczenia emisji węgla do atmosfery. Jednak niezwykle ważne jest zidentyfikowanie tych raf, które zareagują bądź nie zareagują na działania na szczeblu lokalnym. Odpowiednie zarządzanie rafami pozwoli na opracowanie strategii pomocy ludziom, którzy są uzależnieni od raf, dodaje doktor Georgina Gurney.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Federalnej w Lozannie odkryli, że komórki nowotworowe wykorzystują egzosomy, by komunikować się ze sobą za pośrednictwem krwiobiegu.
      To było duże zaskoczenie. Nie spodziewaliśmy się znaleźć w egzosomach takiej ilości markerów komórek czerniaka - podkreśla prof. Hubert Girault.
      Szwajcarski zespół dokonał odkrycia niemal przypadkowo. Ustalenia, które opisano na łamach periodyku Chem, dają cenny wgląd w to, jak komórki nowotworowe komunikują się ze sobą i wysyłają sobie informacje w organizmie.
      Akademicy wyjaśniają, że wszystkie komórki uwalniają egzosomy, które są mikroskopijnymi sferami o średnicy poniżej 100 nanometrów. Przenoszą one "informacje" w postaci kwasów nukleinowych, białek i markerów.
      Pracując nad wyizolowaniem egzosomów komórek czerniaka, Yingdi Zhu posłużyła się hodowlą komórkową i spektrometrią masową MALDI-TOF MS. Była w stanie zidentyfikować w egzosomach markery komórek nowotworowych dla każdego etapu wzrostu czerniaka.
      O ile zdrowe komórki produkują zazwyczaj mało egzosomów, o tyle komórki nowotworowe wytwarzają ich o wiele więcej. Dotąd sądzono jednak, że są one tak "rozcieńczone" we krwi, że trudno je będzie wykryć. Analizując ezgosomy pacjentów z czerniakiem, zaskoczeni naukowcy odkryli duże ilości markerów komórek nowotworowych.
      Prof. Girault uważa, że duża ilość markerów w egzosomach rodzi liczne pytania dot. sygnalizacji między komórkami nowotworowymi, zwłaszcza że wcześniej nie sądzono, że mogą się one komunikować na większe odległości.
      Ta komunikacja przygotowuje tkanki na metazję (przerzutowanie) i w ten sposób ułatwia rozprzestrzenianie komórek. Markery dają też pojęcie, jak bardzo guz jest rozwinięty. Naukowcy sugerują więc, że zamiast wykonywać biopsję, w przyszłości można by przeprowadzać test z krwi, który zapewniałby dane nt. obecności guza i stopnia jego zaawansowania, a nawet pozwalałby przewidywać reakcje na terapię.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mikroorganizmy produkujące tlen w procesie fotosyntezy mogły istnieć na Ziemi co najmniej miliard lat wcześniej, niż dotychczas sądzono. Najnowsze odkrycie może zmienić nasze spojrzenie na ewolucję życia na Ziemi oraz na to, jak mogło ono ewoluować na innych planetach.
      Na Ziemi tlen jest niezbędny do powstania bardziej złożonych form życia, które wykorzystują go w procesie produkcji energii.
      Przed około 2,4 miliarda lat temu na Ziemi doszło katastrofy tlenowej. To nazwa wielkich przemian środowiskowych na Ziemi, których przyczyną było pojawienie się dużych ilości tlenu w atmosferze.
      Część naukowców uważa, że cyjanobakterie, które dostarczyły tlen do atmosfery, pojawiły się stosunkowo niedługo przed katastrofą tlenową. Jednak, jako, że cyjanobakterie wykorzystują dość złożony mechanizm fotosyntezy, podobny do tej używanego obecnie przez rośliny, inni uczeni uważają, że przed cyjanobakteriami mogły istnieć inne, prostsze mikroorganizmy produkujące tlen.
      Teraz naukowcy z Imperial College London poinformowali o znalezieniu dowodów na obecność fotosyntezy tlenowej na co najmniej miliard lat przed pojawieniem się cyjanobakterii.
      Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona.
      Jeśli fotosynteza tlenowa wyewoluowała wcześnie, oznacza to, że jest ona procesem, z którym ewolucja dość łatwo potrafi sobie poradzić. To zaś zwiększa prawdopodobieństwo pojawienia się jej na innych planetach i pojawienia się, wraz z nią, złożonych form życia.
      Jednak stwierdzenie, kiedy na Ziemi pojawili się pierwsi producenci tlenu, jest trudne. Im starsze są skały, tym rzadziej występują i tym trudniej udowodnić, że znalezione w nich skamieniałe mikroorganizmy wykorzystywały lub wytwarzały tlen.
      Zespół Cardony nie zajmował się więc skamieniałymi mikroorganizmami, a postanowił zbadać ewolucję dwóch głównych protein zaangażowanych w fotosyntezę, w wyniku której powstaje tlen.
      W pierwszym etapie fotosyntezy cyjanobakterie wykorzystują światło do rozbicia wody na protony, elektrony i tlen. Pomocny jest w tym kompleks białkowy o nazwie Fotoukład II.
      Fotoukład II złożony jest m.in. z homologicznych protein D1 oraz D2. W przeszłości było one identyczne, jednak obecnie są one kodowane przez różne sekwencje co wskazuje, że w pewnym momencie się rozdzieliły. Nawet wówczas, gdy były identyczne, były one w stanie prowadzić fotosyntezę tlenową. Jeśli jednak udałoby się określić moment, w którym się rozdzieliły, byłby to moment, w którym na pewno tlen powstawał na Ziemi w wyniku fotosyntezy.
      W przeszłości zatem podobieństwo sekwencji genetycznych kodujących D1 i D2 wynosiło 100%, obecnie zaś kodujące je sekwencje w cyjanobakteriach i roślinach są podobne do siebie w 30%. Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent. Wyliczyli, że D1 i D2 w Fotoukładzie II ewoluowały wyjątkowo powoli. Okazało się, że musiało minąć co najmniej miliard lat, by doszło do takiej zmiany w kodującej obie proteiny sekwencji genetycznej.
      Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie na długo przed pojawieniem się ostatniego przodka cyjanobakterii. Jest to zgodne z ostatnimi badaniami geologicznymi, które wskazują, że zlokalizowane gromadzenie sie tlenu było możliwe już ponad 3 miliardy lat temu. Tym samym pojawienie się cyjanobakterii i pojawienie się fotosyntezy, w wyniku której powstaje tlen, nie jest tym samym zjawiskiem. Pomiędzy oboma wydarzeniami mogło upłynąć bardzo dużo czasu. Dla nauki oznacza to wielką zmianę perspektywy, stwierdza Cardona.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...