Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Teleskop Webba powinien wykryć ślady działalności rolniczej na innych planetach

Rekomendowane odpowiedzi

Gdy przed 10 000 lat ludzkość zajęła się rolnictwem, doprowadziło to nie tylko do olbrzymich zmian społecznych czy politycznych. Zajmowanie pod uprawę coraz większych areałów, pojawienie się w końcu rolnictwa na skalę przemysłową doprowadziło też do zmiany składu atmosfery. Jeśli więc istnieją planety, których mieszkańcy również prowadzą rozwiniętą gospodarkę rolną, to ich atmosfery odczuły skutki takiej działalności. Istnieją w nich sygnatury, które powinien zauważyć Teleskop Webba (JWST).

Ziemia pokryta jest olbrzymią mozaiką pól uprawnych, doszło do zmiany sposobu odbijania światła przez szatę roślinną ziemi, a pola uprawne – szczególnie z upraw przemysłowych – emitują do atmosfery różnego typu związki chemiczne. Zdaniem grupy astronomów, zmiany takie muszą być widoczne z przestrzeni kosmicznej. I podobne sygnatury są generowane na wszystkich egzoplanetach, gdzie istnieje rozwinięte rolnictwo. W przyszłych badaniach sygnatur cywilizacji technicznych, warto rozważyć możliwość istnienia sygnatur z „egzofarm”, uważa Jacob Haqq-Misra i jego koledzy Blue Marble Space Institute of Science w Seattle.

Jedną z cech charakterystycznych rolnictwa jest nawożenie pól. Dzięki temu rośliny mają lepszy dostęp do azotu, jednego z podstawowych składowych życia. Podczas produkcji nawozów sztucznych używa się olbrzymich ilości amoniaku. Część z tego amoniaku ucieka do atmosfery. Utrzymuje się w niej jednak zaledwie przed kilka dni. Wykrycie więc amoniaku w atmosferze planety może oznaczać, że jest on tam ciągle dostarczany, a jego źródłem może być rolnictwo.

Jednak sam amoniak to nie wszystko. Wykorzystywanie amoniaku wiąże się też z pojawieniem się tlenku diazotu (N2O), gazu cieplarnianego utrzymującego się w atmosferze przez ponad 100 lat. Jakby jeszcze tego było mało, rolnictwo jest też wielkim źródłem emisji metanu. Zatem astronomowie, którzy za pomocą JWST będą szukali śladów życia pozaziemskiego, mogą rozejrzeć się za sygnaturami wszystkich trzech związków. A zakres swoich badań mogą znacznie zawęzić, gdyż sygnatury świadczące o istnieniu egzofarm mogą pojawić się tylko na planetach, na których przebiega proces fotosyntezy, zatem w atmosferach takich planet powinny być też widoczne sygnatury H2O, O2 i CO2, mówi Haqq-Misra.

Z naszych wyliczeń wynika, że jednoczesne wykrycie NH2 i N2O w atmosferze zawierającej H2O, O2 i CO2 może być sygnaturą istnienia dużego areału uprawnego, stwierdzają autorzy badań. I dodają, że Teleskop Webba powinien być w stanie wykryć amoniak występujący w ilości 5 części na milion w atmosferze planety krążącej wokół pobliskiego czerwonego karła, jeśli znajduje się w niej również sporo wodoru. Obecnie stężenie amoniaku w atmosferze Ziemi wynosi około 10 części na milion.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czasem mam wrażenie, że "naukowcy" bardziej poszukują śladów działalności człowieka na obcych planetach, niż obcych cywilizacji. Wciąż aż tak trudno uwolnić się od geo- i antropocentryzmu? Może niech jeszcze poszukają śladów wysypisk śmieci, plastiku i chemtrailsów oraz spalania węgla podłej jakości w piecach typu koza. Ja rozumiem, że od czegoś trzeba zacząć, ale żeby aż tak ciasno myśleć?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No raczej nie powinieneś się dziwić że szuka się śladów dzialalności a nie obcych :) Obcych szukają całe legiony poszukiwaczy obcych :)
Łatwiej znaleźć piramidę niż samego Cheopsa.
Ok - rozumiem że Twoje założenie jest takie że to jest myślenie antropocentryczne bo inne cywilizacje mogą krańcowo inaczej wyglądać. Można to sobie rzeczywiście wyobrazić i w pewien sposób takie poszukiwania też są prowadzone.
Niemniej - co jest słuszniejsze żeby robić? Szukać tego co wiadomo że istnieje (bo na Ziemi istnieje) czy szukać czegoś co można sobie wymyślić czyli fantazji.
Spójrz na gwiazdy - nie jest to jakiś ogrom typów gwiazd. Zależnie od linii podziału masz kilka - kilkanaście typów. Wniosek - wszechświat tworzy powtarzalne struktury - ponieważ wszędzie rządzą nim te same prawa fizyki.
Dlatego rozsądnie jest założyć że i w świecie żywym opartym na tych samych prawach chemicznych - obiekty są podobne i dzieła cywilizacji są większe niż sama cywilizacja.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@thikim wydało mi się logiczne, że nie piszę o szukaniu obcych jako takich, tylko śladów ich działalności.

W dniu 23.04.2022 o 00:33, lester napisał:

bardziej poszukują śladów działalności człowieka na obcych planetach, niż obcych cywilizacji.

rozumieć należy tak:

W dniu 23.04.2022 o 00:33, lester napisał:

bardziej poszukują śladów działalności człowieka na obcych planetach, niż (śladów) obcych cywilizacji.

Nie lubię takiej nadmiarowości.

 

W dniu 23.04.2022 o 06:56, thikim napisał:

Dlatego rozsądnie jest założyć że i w świecie żywym opartym na tych samych prawach chemicznych - obiekty są podobne i dzieła cywilizacji są większe niż sama cywilizacja.

Wydaje mi się, że to założenie jest zbyt rozsądne ;) i niepotrzebnie zawęża nam pole widzenia, usuwając sprzed oczu mniej oczywiste możliwości. Ale to tylko moje zdanie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Światowa Organizacja Meteorologiczna (WMO) opublikowała raport na temat gazów cieplarnianych w atmosferze w roku 2024. Nie napawa on optymizmem. Raport rozpoczyna się słowami: poziomy trzech najpowszechniej występujących długotrwałych gazów cieplarnianych, dwutlenku węgla, metanu i tlenku azotu pobiły w 2024 roku rekordy. Pomiędzy rokiem 2023 a 2024 poziom CO2 w niskich warstwach atmosfery zwiększył się o 3,5 ppm, to największy wzrost rok do roku od czasu rozpoczęcia regularnych pomiarów w 1957 roku. Wzrost ten był napędzany emisją CO2 ze źródeł kopalnych, zwiększoną emisją z pożarów oraz zmniejszonym pochłanianiem przez lądy i oceany, co może wskazywać na działanie sprzężenia zwrotnego.
      W 2024 roku średnie stężenie CO2 przy powierzchni Ziemi osiągnęło 423,9 ppm. Warto zwrócić uwagę na przyspieszenie tempa wzrostu. W latach 60. XX wieku stężenie dwutlenku węgla wzrastało średnio o 0,8 ppm/rok, natomiast w dekadzie 2011–2020 było to średnio 2,4 ppm/rok. W ciągu ostatnich 10 lat (2014–2024) średnia wyniosła 2,57 ppm.
      Ubiegłoroczny wzrost o 3,5 ppm był rekordowy, wyższy niż dotychczasowy rekord 3,3 ppm z 2016 roku i znacznie wyższy niż 2,4 ppm z roku 2023. Co więcej, ten duży wzrost miał miejsce pomimo tego, że antropogeniczna emisja CO2 w roku 2024 utrzymała się praktycznie na tym samym poziomie co w roku 2023.
      Od 1960 roku ludzkość wyemitowała do atmosfery około 500 miliardów ton węgla. Z tego około połowa została pochłonięta przez oceany i lądy. Problem jednak w tym, nie nie możemy bez końca liczyć na te źródła pochłaniania węgla. Wraz ze wzrostem temperatury oceany są w stanie pochłonąć coraz mniej CO2, gdyż gaz ten gorzej rozpuszcza się w wodzie o wyższej temperaturze. Wyższe temperatury oznaczają też pojawianie się okresów ekstremalnych susz. Z jednej strony oznacza to częstsze pożary, w wyniku których dochodzi do emisji węgla do atmosfery i zmniejszania pokrywy roślinnej, z drugiej zaś, stres wywołany temperaturami i niedoborami wody również może spowodować zmniejszone pochłanianie węgla przez roślinność. Za przykład niech posłużą niedawne badania australijskich uczonych, którzy zauważyli, że w pierwszej dekadzie obecnego wieku doszło do radykalnej zmiany, w wyniku której wilgotne lasy tropikalne Australii stały się emitentem netto węgla.
      Z raportu WMO dowiadujemy się, że w rekordowym ubiegłym roku wzrostu stężenia CO2 w atmosferze ekosystemy lądowe i oceany są prawdopodobnie odpowiedzialne za 1,1 ppm tego wzrostu. Średnia globalna temperatura była najwyższa od 1850 roku i po raz pierwszy była o 1,5 stopnia wyższa niż w epoce przedprzemysłowej. Było to spowodowane zarówno długoterminowym ociepleniem klimatu, jak i pojawieniem się zjawiska El Niño. W wyniku połączenia obu czynników doszło do zmian w rozkładzie regionalnych temperatur i opadów, co wpłynęło na wchłanianie i uwalnianie CO2 przez rośliny oraz liczbę i wielkość pożarów. Cieplejsze oceany wyemitowały też więcej węgla niż zwykle. Jednak główną przyczyną anomalii zarejestrowanej w roku 2024 był zmniejszenie wchłaniania netto węgla przez ekosystemy oraz zwiększenie emisji z pożarów, stwierdzają autorzy raportu.
      Naukowcy obawiają się, że ekosystemy morskie i lądowe coraz mniej efektywnie pochłaniają dwutlenek węgla, zatem coraz większa część antropogenicznej emisji pozostaje w atmosferze, przyspieszając globalne ocieplenie.
      Usuwanie antropogenicznego CO2 z atmosfery jest uzależnione od wymiany pomiędzy miejscami jego wchłaniania. Wymiana ta trwa w skalach od lat (pochłanianie przez wody powierzchniowe oceanów), po setki tysięcy lat (wietrzenie skał). Spowolnienie wchłaniania CO2 jest dodatkowo potęgowane przez powolne pochłanianie energii cieplnej przez głębiny oceaniczne. W wyniku tego raz wyemitowany dwutlenek węgla pozostaje w atmosferze praktycznie bez końca. Inaczej jest w przypadku metanu, którego czas istnienia w atmosferze wynosi około 9 lat. Gaz ten jest usuwany w wyniku utleniania, czytamy w dokumencie.
      W epoce przedprzemysłowej w atmosferze utrzymywała się równowaga pomiędzy emisją a pochłanianiem i poziom dwutlenku węgla wynosił 278,3 ppm. Obecnie przekroczył 420 ppm, co oznacza wzrost o ponad 50%.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...