Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wypalanie lasów i sawann metodą na uwięzienie węgla w glebie?

Rekomendowane odpowiedzi

Sadzenie drzew i zapobieganie pożarom lasów niekoniecznie prowadzi do uwięzienia większej ilości węgla w glebie. Autorzy badań opublikowanych na łamach Nature Geoscience odkryli, że planowane wypalanie sawann, użytków zielonych oraz lasów strefy umiarkowanej może pomóc w ustabilizowaniu węgla uwięzionego w glebie, a nawet zwiększenia jego ilości.

Kontrolowane wypalanie lasów, którego celem jest zmniejszenie intensywności przyszłych niekontrolowanych pożarów, to dobrze znana strategia. Odkryliśmy, że w takich ekosystemach jak lasy strefy umiarkowanej, sawanny i użytki zielone, ogień może ustabilizować, a nawet zwiększyć ilość węgla uwięzionego w glebie, mówi główny autor badań, doktor Adam Pellegrini z University of Cambridge.

Wynikiem dużego niekontrolowanego pożaru lasu jest erozja gleby i wypłukiwanie węgla do środowiska. Mogą minąć nawet dziesięciolecia, nim uwolniony w ten sposób węgiel zostanie ponownie uwięziony. Jednak, jak przekonują autorzy najnowszych badań, ogień może również prowadzić do takich zmian w glebie, które równoważą utratę węgla i mogą go ustabilizować.
Po pierwsze, w wyniku pożaru powstaje węgiel drzewny, który jest bardzo odporny na rozkład. Warstwa węgla zamyka zaś wewnątrz bogatą w węgiel materię organiczną. Ponadto ogień może zwiększyć ilość węgla ściśle powiązanego z minerałami w glebie. Jeśli odpowiednio dobierze się częstotliwość i intensywność pożarów, ekosystem może uwięzić olbrzymie ilości węgla. Chodzi tutaj o zrównoważenie węgla przechodzącego do gleby w postaci martwych roślin i węgla wydostającego się z gleby w procesie rozkładu, erozji i wypłukiwania, wyjaśnia Pellegrini.

Gdy pożary są częste i intensywne, a tak się dzieje w przypadku gęstych lasów, wypalane są wszystkie martwe rośliny. Ta martwa materia organiczna rozłożyłaby się i węgiel trafiłby do gleby. Tymczasem w wyniku pożaru zostaje on uwolniony do atmosfery. Ponadto bardzo intensywne pożary mogą destabilizować glebę, oddzielając bogatą w węgiel materię organiczną od minerałów i zabijając bakterie oraz grzyby.

Bez obecności ognia martwa materia organiczna jest rozkładana przez mikroorganizmy i uwalniana w postaci dwutlenku węgla lub metanu. Gdy jednak dochodzi do niezbyt częstych i niezbyt intensywnych pożarów, tworzy się węgiel drzewny oraz dochodzi do związania węgla z minerałami w glebie. A węgiel w obu tych postaciach jest znacznie bardziej odporny na rozkład, a tym samym na uwolnienie do atmosfery.

Autorzy badań mówią, że odpowiednio zarządzane wypalanie może doprowadzić do zwiększenia ilości węgla uwięzionego w glebie. Gdy rozważamy drogi, jakimi ekosystem przechwytuje węgiel z atmosfery i go więzi, zwykle uważamy pożary za coś niekorzystnego. Mamy jednak nadzieję, że nasze badania pozwolą odpowiednio zarządzać pożarami. Ogień może być czymś dobrym, zarówno z punktu widzenia bioróżnorodności jak i przechowywania węgla, przekonuje Pellegrini.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przyznaję, że nigdy nie myślałem o pożarach w ten sposób, ale faktycznie, może coś w tym być. Jednak kontrolowanie takich pożarów może być bardzo trudne, a wymknięcie się ich spod kontroli najpewniej będzie prowadzić do tragedii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

taka procedure stosują od dawna nasi ekolodzy w piecach-kopciuchach: miał skrapia sie wodą, owija w papier i ostrożnie do paleniska wieczorem. Powietrza nie za dużo, żeby starczyło miału do rana! A na rano mamy wegiel w stanie uwięzionym - ot i cała filozofia!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niedługo okaże się że elektrownie atomowe są nieemisyjne :) Na razie są tylko niskoemisyjne :)
Kwestia kto płaci za badania :D
Za to rosyjski gaz - jest nie emisyjny :) Paliwo przyszłości.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Polne kwiaty, sadzone w miastach w miejscach, w których wcześniej znajdowały się budynki mieszkalne czy przemysłowe, mogą być niebezpieczne dla pszczół i innych zapylaczy. Okazuje się bowiem, że mogą one akumulować ołów, arsen i inne metale ciężkie z gleby. Nektar z takich kwiatów szkodzi owadom, prowadząc do ich śmierci i zmniejszenia populacji. Nawet niewielkie ilości metali ciężkich w nektarze mogą negatywnie wpływać na mózgi pszczół, zmniejszając ich umiejętności uczenia się i zapamiętywania, które są niezbędne przy zdobywaniu żywności.
      Sarah B. Scott z University of Cambridge oraz Mary M. Gardiner z Ohio State University zauważyły, że takie rośliny jak koniczyna biała czy powój, posadzone w miastach w miejscach byłych budynków, narażają pszczoły na kontakt z niebezpiecznym chromem, kadmem, ołowiem czy arsenem. Gleba miast na całym świecie jest zanieczyszczona metalami ciężkimi, a poziom zanieczyszczeń jest zwykle tym większy, im starsze jest miasto. Metale pochodzą z wielu różnych źródeł, w tym z cementu.
      Autorki badań uważają zatem, że jeśli chcemy zdegradowane tereny miejskie zwracać naturze, najpierw warto przeprowadzić badania gleby i dostosować gatunki roślin do zanieczyszczeń. Czasami konieczne będzie wcześniejsze oczyszczenie gleby.
      Polne kwiaty są bardzo ważnym źródłem pożywienia dla pszczół i naszym celem nie jest zniechęcanie ludzi do ich siania w miastach. Mamy nadzieję, że dzięki naszym badaniom ludzie zdadzą sobie sprawę, że jakość gleby również jest ważna dla zdrowia pszczół. Zanim zasiejemy w mieście kwiaty, by przyciągnąć pszczoły i innych zapylaczy, warto zastanowić się nad historią miejsca, gdzie mają żyć rośliny i nad tym, co może znajdować się w glebie. A tam, gdzie to konieczne, warto przeprowadzić badania i oczyścić glebę, mówi doktor Scott.
      W ramach swoich badań uczone przyjrzały się terenom poprzemysłowym w Cleveland. Zebrały nektar z kwiatów wielu roślin, które przyciągają zapylaczy, i przetestowały go pod kątem obecności arsenu, kadmu, chromu i ołowiu.
      Badaczki zauważyły, że różne rośliny różnie akumulują metale. Ich największe stężenie występowało w kwiatach cykorii podróżnik, następne na liście były koniczyna biała, marchew zwyczajna i powój. To niezwykle ważne rośliny dla miejskich zapylaczy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hyceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hyceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hyceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2022 roku w pobliżu Tonga na Pacyfiku doszło do erupcji podwodnego wulkanu Hunga Tonga–Hunga Haʻapai. Była to jedna z najpotężniejszych erupcji w czasach współczesnych. Do atmosfery trafiła olbrzymia ilość wody, więc naukowcy ogłosili, że prawdopodobnie przyczyni się to do przejściowego dodatkowego ogrzania powierzchni Ziemi. Obawy okazały się jednak bezzasadne. Opublikowane właśnie na łamach Nature badania pokazują, że nie tylko nie doszło do ogrzania planety, ale erupcja wulkanu spowodowała spadek temperatur na półkuli południowej o 0,1 stopnia Celsjusza.
      Erupcje wulkaniczne, wyrzucając do atmosfery popiół, pył i różne gazy, zwykle przyczyniają się do przejściowego schłodzenia powierzchni planety. Tymczasem Hunga Tonga nie dostarczył do stratosfery zbyt dużej ilości aerozoli. Stwierdzono natomiast, że duża ilość wody, jaka trafiła do stratosfery, może przejściowo przyczynić się do niewielkiego zwiększenia temperatury na powierzchni planety, gdyż para wodna jest gazem cieplarnianym.
      Okazuje się, że nic takiego się nie stało, a półkula południowa się ochłodziła. Badacze z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) i ich koledzy z Pennsylvannia State University i Vanderbilt University stwierdzili właśnie, że przyczyną takiego stanu rzeczy było uformowanie się mniejszych cząstek aerozoli zawierających siarkę, których wpływ chłodzący przeważył nad wpływem ocieplającym pary wodnej. Para wodna weszła w interakcje z dwutlenkiem siarki i innymi gazami w atmosferze – w tym z ozonem – w taki sposób, który nie zwiększył ocieplenia.
      Naukowcy wykorzystali satelity do śledzenia pary wodnej, aerozoli siarczanowych i ozonu oraz ich wpływu na temperatury. Szczegółowe analizy pozwoliły określić, w jaki sposób erupcja zmieniła przepływ energii w atmosferze i wpłynęła na temperatury na powierzchni. Badacze dowiedzieli się, że natychmiast po erupcji doszło do strat energii netto w pobliżu tropopauzy. Aerozole, które powstały w wyniku wybuchu Hunga Tonga były o około 50% mniejsze niż te po erupcji Pinatubo, dzięki czemu lepiej blokowały światło słoneczne i schładzały atmosferę pomimo obecności dodatkowej pary wodnej. Zaskakujące informacje o chłodzącym wpływie tej erupcji uzyskano dzięki włączeniu do analizy wpływu ozonu i innych składników atmosfery, podczas gdy autorzy wcześniejszych badań skupiali się głównie na aerozolach siarczanowych i parze wodnej.
      Z badań wynika, że erupcje wulkanów znajdujących się płytko pod wodą prowadzą do złożonych zmian w atmosferze. O ile półkula południowa się nieco ochłodziła, istnieją przesłanki by przypuszczać, że półkula północna uległa minimalnemu ogrzaniu przez parę wodną. Generalnie jednak w skali planety erupcja wywarła niewielki efekt chłodzący.
      Główny wniosek z badań jest taki, że aerozole siarczanowe rzeczywiście przyczyniły się do niewielkiego ochłodzenia półkuli południowej. Część tego efektu chłodzącego spowodowana była faktem, że rozmiary aerozoli były optymalne jeśli chodzi o ich właściwości chłodzące. Stały się takie dzięki złożonym interakcjom chemicznym i mieszaniu się atmosfery, których do końca jeszcze nie rozumiemy. Nasze badania pokazują też, że próby zastosowania geoinżynierii do schłodzenia Ziemi mogą mieć liczne, nieprzewidziane konsekwencje, dodaje Gupta.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Copernicus Climate Change Service poinformował, że łączny zasięg lodu morskiego na obu biegunach osiągnął na początku lutego rekordowo niskie wartości i pozostał na takim poziomie do końca miesiąca, bijąc w ten sposób rekord małego zasięgu z lutego 2023 roku.
      W Arktyce zasięg lodu był o 8% niższy niż wieloletnia średnia dla lutego. To już trzeci miesiąc z rzędu, gdy w tym regionie zostaje pobity niechlubny rekord dla danego miesiąca. Tutaj trzeba wspomnieć, że nie jest to rekordowo niski zasięg lodu w ogóle, gdyż obecnie lód morski w Arktyce zbliża się do swojego maksymalnego zasięgu, który osiągnie w marcu.
      Z kolei w Antarktyce lutowy zasięg lodu morskiego był o 26% niższy od średniej dla tego miesiąca. To 4. najniższy zasięg w historii.
      Eksperci przypuszczają – co można będzie potwierdzić w najbliższych dniach – że na przełomie lutego i marca lód morski w Antarktyce osiągnie drugi w historii pomiarów zasięg minimalny.
      Jednocześnie luty 2025 roku był trzecim najcieplejszym lutym w historii pomiarów. Średnie temperatury powietrza sięgnęły 13,36 stopnia Celsjusza i były o 0,63 stopnia wyższe od średniej z lat 1991–2020. To jednocześnie o 1,59 stopnia Celsjusza więcej niż szacowana średnia z lat 1850–1900. Był to jednocześnie 19. z ostatnich 20 miesięcy, w czasie którego średnia temperatura powietrza była o ponad 1,5 stopnia Celsjusza wyższa niż w czasach przedprzemysłowych.
      Mały zasięg lodu morskiego to gigantyczny problem dla zwierząt, które potrzebują go do przetrwania. To również wielki problem dla całej planety. Co prawda roztapianie się lodu pływającego nie podnosi poziomu oceanów, jednak im lodu mniej, tym ciemniejsza jest powierzchnia Ziemi, więc tym więcej energii ze Słońca jest absorbowane, a nie odbijane. To zaś przyspiesza globalne ocieplenie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy przeprowadzono trójwymiarowe obserwacje atmosfery planety pozasłonecznej. Dokonał tego międzynarodowy zespół złożony z naukowców ze Szwajcarii, Francji, Hiszpanii, Chile, Kanady, Szwecji, USA i Portugalii wykorzystując wszystkie cztery duże teleskopy tworzące Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego. Celem badań był ultragorący jowisz WASP-121b, położony 900 lat świetlnych od Ziemi w Gwiazdozbiorze Rufy. Znajduje się tak blisko gwiazdy, że obiega ją w 30 godzin.
      Niezwykłą atmosferę WASP-121b opisywaliśmy wcześniej w tekście Potężny wiatr i deszcz z kamieni szlachetnych, pierwszy dokładny obraz nocnej strony egzoplanety. Teraz udało się ją zbadać w 3D.
      Ultragorące jowisze, ekstremalna klasa planet nieobecna w Układzie Słonecznym, dają wyjątkowy wgląd w procesy atmosferyczne. Ekstremalne różnice temperatur pomiędzy stroną dzienną a nocną każą zadać sobie fundamentalne pytanie: jak jest tam rozłożona energia? Aby na nie odpowiedzieć, musimy obserwować trójwymiarową strukturę ich atmosfer, szczególnie zaś ich cyrkulację pionową, która może posłużyć jako test zaawansowanych Globalnych Modeli Cyrkulacji, stwierdzili autorzy badań.
      Naukowcy zajrzeli w głąb atmosfery planety i zauważyli wiatry wiejące w różnych jej warstwach. Stworzyli dzięki temu trójwymiarową najbardziej szczegółową mapę atmosfery egzoplanety.
      To, co zobaczyliśmy, zaskoczyło nas. Prąd strumieniowy niesie materiał wokół równika planety, a w niższych warstwach atmosfery ma miejsce inny przepływ, który przemieszcza gazy ze strony gorącej na zimną. Nigdy wcześniej, na żadnej planecie, nie obserwowaliśmy takiego klimatu, mówi Julia V. Seidel z francuskiego Observatoire de la Côte d’Azur. Zaobserwowany prąd strumieniowy rozciąga się na połowę planety, znacząco przyspieszając i gwałtownie skłębiając wysokie partie atmosfery, gdy przekracza gorącą stronę planety. W porównaniu z nim, nawet najpotężniejsze huragany Układu Słonecznego wydają się spokojnymi podmuchami, dodaje Seidel.
      VLT pozwolił nam na jednoczesne śledzenie trzech różnych warstw atmosfery, cieszy się Leonardo A. dos Santos ze Space Telescope Science Institute w USA. Uczeni śledzili przemieszczanie się w atmosferze żelaza, sodu i wodoru, dzięki czemu mogli obserwować dolną, średnią i górną warstwę. Tego typu obserwacje trudno jest wykonać za pomocą teleskopów w przestrzeni kosmicznej, co pokazuje, jak ważne są naziemne badania egzoplanet, dodaje uczony.
      Niespodzianką była obecność tytanu, który zauważono pod obserwowanym prądem strumieniowym. Wcześniejsze badania nie wykazały obecności tego pierwiastka. Prawdopodobnie dlatego, że jest ukryty w głębokich warstwach atmosfery.
      Niezwykłym osiągnięciem jest możliwość tak szczegółowego badania atmosfery planet położonych tak daleko od Ziemi, ich składu chemicznego i wzorców pogodowych. Jednak do zbadania egzoplanet wielkości Ziemi konieczne będą większe teleskopy. Jednym z nich może być Extremely Large Telescope (ELT), budowany przez Europejskie Obserwatorium Południowe na pustyni Atacama.


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...