Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Naukowcy z Łodzi stworzą system monitorowania plazmy w reaktorach termojądrowych

Rekomendowane odpowiedzi

Naukowcy z Politechniki Łódzkiej będą prowadzić badania nad systemem monitorującym wytwarzanie plazmy termojądrowej. Jak podkreślono w komunikacie prasowym uczelni, finansowanie przyznała [doktorantowi Bartłomiejowi Jabłońskiemu] europejska organizacja EUROfusion w konkursie na projekty dotyczące rozwiązania problemów naukowych związanych z fuzją termojądrową.

Opiekunami grantu są dr hab. inż. Dariusz Makowski i dr hab. inż. Wojciech Tylman. Projekt będzie realizowany we współpracy z dr. Marcinem Jakubowskim z Instytutu Fizyki Plazmy im. Maxa Plancka w Greifswaldzie, dr. Raphaelem Mitteau z centrum badań jądrowych CEA i specjalistami z International Thermonuclear Experimental Reactor (ITER).

W ramach trzyletniego grantu prowadzone będą badania naukowe nad nowymi metodami przetwarzania obrazów w czasie rzeczywistym oraz wykorzystaniem uczenia maszynowego i sieci neuronowych do ochrony i sterowania urządzeniami do wytwarzania plazmy termojądrowej. Głównym celem projektu jest opracowanie metodyki oraz algorytmów sterowania plazmą, jak również zabezpieczenia maszyny, wykorzystując obrazy z kamer termowizyjnych dla wyładowań plazmowych dłuższych niż 30 minut – wyjaśnia dr hab. inż. Dariusz Makowski.

Urządzenia, które powstaną dzięki polskim naukowcom zostaną wykorzystane zarówno w niemieckim stellaratorze Wendelstein 7-X, jak we francuskim tokamaku WEST. Wyniki prac urządzeń do obrazowania zachowania plazmy są niezwykle ważne dla rozwoju przyszłych technologii fuzyjnych. Specjaliści mają nadzieję, że dzięki temu lepiej będą rozumieli plazmę i opracują doskonalsze metody jest utrzymania i kontroli.

Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania

System monitorujący plazmę będzie zatem przydatny dla rozwoju obu konkurencyjnych technologii reaktorów jądrowych – tokamaka i stellaratora.

Bardziej znany z nich jest tokamak, którego koncepcja została stworzona w latach 50. przez radzieckich uczonych. Główna komora tokamaka ma kształt torusa, w którym za pomocą elektromagnesów tworzony jest pierścień plazmy. Przez ostatnich kilkadziesiąt lat świat kładł duży nacisk na rozwój tokamaków. Najbardziej znanym urządzeniem tego typu jest powstający we Francji międzynarodowy ITER. A wspominany tutaj WEST, a konkretnie jego wcześniejsza wersja Tore Supra, to światowy rekordzista pod względem utrzymania plazmy w tokamaku (6 minut 30 sekund).

Jedną z alternatyw dla tokamaków są stellaratory. Charakteryzuje je znacznie bardziej skomplikowana budowa, przez co nie wiązano z nimi tak wielkich nadziei jak z tokamakami. Mają jednak liczne zalety, których brak tokamakom. Przykładem stellaratora jest wspomniany tutaj Wendelstein 7-X (W7-X), w który zainwestowała też Polska. Ostatnio informowaliśmy o badaniach, które mogą spowodować, że stellaratory wyjdą z cienia tokamaków i będziemy dysponowali co najmniej dwie rzeczywiście konkurencyjnymi rozwiązaniami reaktora do fuzji jądrowej.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pobili rekord temperatury, obalili teorię o katastrofie entropii i wykorzystali nowy metodę spektroskopii laserowej do badania gęstej plazmy – a to wszytko podczas jednych przełomowych badań, których wyniki opisali na łamach Nature. Międzynarodowy zespół naukowców z uczelni w USA, Wielkiej Brytanii i European XFEL poinformował o podgrzaniu złota do ponad 19 000 kelwinów bez utraty jego struktury krystalicznej.
      To prawdopodobnie najbardziej gorący kryształ, jaki kiedykolwiek zarejestrowano, mówi profesor Thomas White z University of Nevada. Uzyskane wyniki obalają teorię zwaną katastrofą entropii, zgodnie z którą żadne ciało stałe nie może pozostać stabilne w temperaturze trzykrotnie przekraczającej jego temperaturę topnienia. Dla złota temperatura ta wynosi 1337 kelwinów, więc zgodnie z tą teorią złoto powinno utracić strukturę krystaliczną po przekroczeniu temperatury 4000 kelwinów. Tymczasem utrzymało ją przy temperaturze 14-krotnie wyższej od temperatury topnienia.
      Naukowcy rozgrzewali cienką złotą folię wykorzystując do tego celu laser, którego impuls trwał 50 biliardowych części sekundy. Wydaje się, że powodem, dla którego złoto zachowało strukturę krystaliczną jest tempo rozgrzewania. Wyniki eksperymentu sugerują, że ciała stałe mogą zachować strukturę krystaliczną przy znacznie wyższych temperaturach niż sądzono, o ile zostaną odpowiednio szybko podgrzane. To zaś niezwykle ważne spostrzeżenie dla badań nad fizyką wysokich energii czy fuzją jądrową.
      Do pomiaru tak wysokiej temperatury wewnątrz złotej folii potrzebne było odpowiednie narzędzie. W roli największego termometru na świecie wykorzystaliśmy Linac Coherent Light Source, 3-kilometrowy laser generujący twarde promieniowanie rentgenowskie. To po raz pierwszy pozwoliło nam zmierzyć temperaturę wewnątrz gęstej plazmy. Wcześniej taki pomiar nie był możliwy, wyjaśnia White.
      Opracowana podczas badań nowa metoda pozwoli na bezpośrednie pomiary temperatury wewnątrz plazmy powstającej w momencie implozji podczas eksperymentów z inercyjnym uwięzieniem plazmy podczas fuzji jądrowej. To z kolei powinno znakomicie zwiększyć naszą wiedzę na temat tego procesu i możliwości jego kontroli, co jest niezbędne do stworzenia praktycznych elektrowni fuzyjnych.
      Niedawno White i jego zespół ponownie zaczęli wykorzystywać Linac Coherent Light Source. Tym razem prowadzą eksperymenty z gorącym skompresowanym żelazem. Chcą w ten sposób lepiej poznać warunki panujące wewnątrz planet.
      Źródło: Superheating gold beyond the predicted entropy catastrophe threshold

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wendelstein 7-X, największy stellarator na świecie, pobił światowy rekord w kluczowym parametrze fuzji jądrowej, potrójnym iloczynie (triple product). Stellaratory to, po tokamakach, najbardziej popularna architektura reaktorów fuzyjnych. Oba rodzaje mają swoje wady i zalety, jednak stellaratory są trudniejsze do zbudowania, dlatego też świat skupia się głównie na tokamakach. Obecnie istnieje około 50 tokamaków i 10 stellaratorów.
      Znajdujący się w Greifswald w Niemczech Wendelstein 7-X został wybudowany przez Instytut Fizyki Plazmy im. Maxa Plancka. Zainwestowała w niego też Polska. Przed dwoma tygodniami, 22 maja zakończyła się tam kampania badawcza OP 2.3. W ostatnim dniu jej trwania międzynarodowy zespół pracujący przy W7-X utrzymał nową rekordową wartość potrójnego iloczynu przez 43 sekundy. Tym samym przebił najlepsze osiągnięcia tokamaków.
      Dlaczego potrójny iloczyn jest tak ważny?
      Potrójny iloczyn to jeden z kluczowych elementów opisujących wydajność i warunki potrzebne do osiągnięcia zapłonu, czyli do samopodtrzymującej się reakcji fuzji jądrowej. Jest to iloczyn trzech wielkości: gęstości plazmy (n), jej temperatury (T) oraz czasu uwięzienia energii w plazmie (τE). Żeby reakcja fuzji jądrowej była efektywna i samowystarczalna, potrójny iloczyn musi osiągnąć lub przekroczyć pewną minimalną wartość. W praktyce oznacza to konieczność osiągnięcia odpowiedniej temperatury plazmy, która jest konieczna do pokonania sił odpychających jądra atomów od siebie, osiągnięcia wysokiej gęstości, co zwiększa szanse na zderzenia między jądrami oraz osiągnięcia długiego czasu uwięzienia energii, gdyż jeśli energia ucieka zbyt szybko, plazma się schładza. Po przekroczeniu wartości granicznej iloczynu reakcja fuzji zaczyna samodzielnie się podtrzymywać, bez konieczności dogrzewania plazmy z zewnątrz.
      Dotychczas minimalną wartość potrójnego iloczynu przekroczono – zatem osiągnięto zapłon – jedynie w impulsowym inercyjnym reaktorze laserowym NIF. O osiągnięciu tym było głośno przed ponad dwoma laty. Pisaliśmy o tym w tekście Fuzja jądrowa: co tak naprawdę osiągnięto w National Ignition Facility?
      Rekordowy stellarator pokonał tokamaki
      Tokamaki są prostsze w budowie i łatwiej w nich osiągnąć wysoką temperaturę plazmy. W bardziej skomplikowanych stellaratorach łatwiej zaś plazmę ustabilizować. Tokamaki są więc bardziej popularne wśród badaczy. Stellaratory pozostają w tyle, ale w ostatnich latach dokonano w badaniach nad nimi kilku znaczących przełomów, o których wcześniej informowaliśmy.
      Czytaj:
      Jak załatać magnetyczną butelkę? Rozwiązano problem, który od 70 lat trapił fuzję jądrową
      Duży krok naprzód w dziedzinie fuzji jądrowej. Stellaratory mogą wyjść z cienia tokamaków 
      Najwyższymi osiągnięciami potrójnego iloczynu wśród tokamaków mogą pochwalić się japoński JT60U (zaprzestał pracy w 2008 roku) i europejski JET w Wielkiej Brytanii (zaprzestał pracy w 2023 r.). Oba na kilka sekund zbliżyły się do minimalnej wartości granicznej. W7-X wydłużył ten czas do 43 sekund. Pamiętamy, co prawda, że niedawno Chińczycy pochwalili się utrzymaniem reakcji przez ponad 1000 sekund, jednak nie podali wartości potrójnego iloczynu, zatem nie wiemy, czy ten kluczowy parametr został osiągnięty.
      Klucz do sukcesu: wstrzykiwanie kapsułek z wodorem
      Kluczem do sukcesu W7-X było nowe urządzenie zasilające plazmę w paliwo, które specjalnie na potrzeby tego stellaratora zostało zbudowane prze Oak Ridge National Laboratory w USA. Urządzenie schładza wodór tak bardzo, że staje się on ciałem stałym, następnie tworzy z niego kapsułki o średnicy 3 mm i długości 3,2 mm i wystrzeliwuje je w kierunki plazmy z prędkością 300 do 800 metrów na sekundę. W ten sposób reakcja jest wciąż zasilana w nowe paliwo. W ciągu wspomnianych 43 sekund urządzenie wysłało do plazmy około 90 kapsułek. Dzięki precyzyjnej koordynacji grzania plazmy i wstrzeliwania kapsułek możliwe było uzyskanie optymalnej równowagi pomiędzy ogrzewaniem, a dostarczaniem paliwa. Podczas opisywanego przez nas eksperymentu temperatura plazmy została podniesiona do ponad 20 milionów stopni Celsjusza, a chwilowo osiągnęła 30 milionów stopni.
      Ponadto wśród ważnych osiągnięć kampanii OP 2.3 warto wspomnieć o tym, że po raz pierwszy w całej objętości plazmy ciśnienie plazmy wyniosło 3% ciśnienia magnetycznego. Podczas osobnych eksperymentów ciśnienie magnetyczne obniżono do około 70%, pozwalając wzrosnąć ciśnieniu plazmy. Ocenia się, że w reaktorach komercyjnych ciśnienie plazmy w całej jej objętości będzie musiało wynosić 4–5% ciśnienia magnetycznego. Jednocześnie szczytowa temperatura plazmy wzrosła do około 40 milionów stopni Celsjusza.
      Rekordy pobite podczas naszych eksperymentów to znacznie więcej niż cyfry. To ważny krok w kierunku zweryfikowania przydatności samej idei stellaratorów, posumował profesor Robert Wolf, dyrektor wydziału Optymalizacji i Grzania Stellaratora w Instytucie Fizyki Plazmy im. Maxa Plancka.
      Czym jest fuzja jądrowa
      Fuzja jądrowa – reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii w tym procesie. Taki proces produkcji energii ma bardzo dużo zalet. Nie dochodzi do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody, i litu, z których można pozyskać paliwo do fuzji, czyli, odpowiednio, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Fuzja jądrowa jest bowiem niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Fuzja jądrowa to jednak bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fuzja jądrowa to obietnica czystego, bezpiecznego i praktycznie nieskończonego źródła energii. Badania nad nią trwają od dziesięcioleci i nic nie wskazuje na to, byśmy w najbliższym czasie mogli zastosować ją w praktyce. Naukowcy dokonują powolnych, mniejszych lub większych, kroków na przód w kierunku jej opanowania. Uczeni z University of Texas, Los Alamos National Laboratory i Type One Energy Group rozwiązali właśnie poważny problem, który od 70 lat nękał jeden z rodzajów reaktorów fuzyjnych – stellaratory – spowalniając prace nad nimi. Jego rozwiązanie przyda się również w udoskonaleniu tokamaków, innego – znacznie bardziej popularnego – projektu reaktora fuzyjnego.
      Jednym z poważnych wyzwań stojących przed wykorzystaniem w praktyce fuzji jądrowej jest utrzymanie wysokoenergetycznych cząstek wewnątrz reaktora. Gdy takie wysokoenergetyczne cząstki alfa wyciekają, uniemożliwia to uzyskanie wystarczająco gorącej i gęstej plazmy, niezbędnej do podtrzymania reakcji. Inżynierowie opracowali złożone metody zapobiegania wyciekom za pomocą pól magnetycznych, jednak w polach takich występują luki, a przewidzenie ich lokalizacji i zapobieżenie im wymaga olbrzymich mocy obliczeniowych i wiele czasu.
      Na łamach Physical Review Letters ukazał się artykuł, w którym wspomniani wcześniej naukowcy informują o opracowaniu metody 10-krotnie szybszego przewidywania miejsc pojawiania się luk, bez poświęcania dokładności.
      Rozwiązaliśmy problem, który był nierozwiązany od 70 lat. Będzie to znaczący przełom w sposobie projektowania reaktorów, mówi profesor Josh Burry z University of Texas. W stellaratorach wykorzystywany jest układ cewek, za pomocą których generowane są pola magnetyczne. Nazywany jest on „magnetyczną butelką”. Miejsca występowania dziur w magnetycznej butelce można precyzyjnie przewidywać korzystając z zasad dynamiki Newtona. Jednak działanie takie wymaga olbrzymich ilości czasu i wielkich mocy obliczeniowych. Co więcej, by zaprojektować stellarator idealny konieczna byłaby symulacja setek tysięcy różnych projektów i stopniowe dostosowywanie do każdego z nich układu magnetycznej butelki.
      By więc oszczędzić czas i pieniądze podczas obliczeń standardowo używa się teorii perturbacji, która daje wyniki przybliżone. Są one jednak znacznie mniej dokładne. Autorzy najnowszych badań podeszli do problemu w inny sposób, wykorzystując teorię symetrii.
      Obecnie nie ma innego niż nasz teoretycznego sposobu na rozwiązanie kwestii uwięzienia cząstek alfa. Bezpośrednie zastosowanie zasad dynamiki Newtona jest zbyt kosztowne, a teoria perturbacji związana jest z poważnymi błędami. Nasza teoria jest pierwszą, która radzi sobie z tymi ograniczeniami, dodaje Burry.
      Co więcej, nowa praca może pomóc też w rozwiązaniu podobnego, ale innego problemu występującego w tokamakach. W nich z kolei problemem są wysokoenergetyczne elektrony, które dziurawią osłony reaktora. Nowa metoda może pozwolić na zidentyfikowanie luk w polach magnetycznych, przez które elektrony wyciekają.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma TAE Technologies, która od niemal 30 lat prowadzi badania nad fuzją jądrową, ogłosiła, że dokonała znaczącego postępu pod względem wydajności i sprawności reaktora fuzyjnego. Wyniki naszych eksperymentów, opublikowane na łamach recenzowanego pisma Nature Communications, dowodzą, że TAE opracowało taką metodę formowania i optymalizacji plazmy, która zwiększa wydajność, znacząco obniża złożoność i koszty oraz przyspiesza moment, w którym zademonstrujemy pozyskiwanie energii netto i komercyjną fuzję jądrową, czytamy w firmowym oświadczeniu.
      Firma twierdzi, że jej ostatnie pracy udowodniły, iż z reaktora, który rozwija, można będzie pozyskać 100-krotnie więcej energii niż z typowego tokamaka korzystającego z pola magnetycznego o tej samej sile, zdolnego do uwięzienia tej samej ilości plazmy. Dodatkowo jej system jest znacznie prostszy, dzięki czemu jest znacznie tańszy w budowie i utrzymaniu.
      TAE Technologies powstała w 1998 roku. Przez wiele lat firma unikała rozgłosu, nie zdradzając o sobie zbyt wielu informacji. Witrynę internetową uruchomiła dopiero w 2015 roku. Wiadomo, że w 2021 roku zatrudniała ponad 250 pracowników i zebrała finansowanie w wysokości 880 milionów USD. Jej głównymi sponsorami są Goldman Sachs, Vulcan Inc. (firma założyciela Microsoftu Paula Allena) czy fundusze venture capital jak Venrock i New Enterprise Associates.
      TAE Technologies rozwija technologię fuzji aneutronowej za pomocą techniki FRC (Field-Reversed Configuration). Fuzja aneutronowa to rodzaj syntezy termojądrowej, w której bardzo mało energii jest unoszonej przez neutrony. Jest ona znacznie bezpieczniejsza od tradycyjnej fuzji jądrowej, nie wymaga tak dobrego ekranowania, a pozyskana z niej energia jest łatwiejsza do przetworzenia na użyteczny dla nas prąd. Nie ma też ryzyka, że poszczególne elementy reaktora staną się radioaktywne, więc trzeba będzie je w specjalny sposób zabezpieczać, gdy przestaną być używane. Jednak uzyskanie fuzji aneutronowej jest znacznie trudniejsze, wymaga bardziej ekstremalnych warunków, niż w przypadku tradycyjnej fuzji z wykorzystaniem deuteru i trytu.
      TAE Technologies ma zamiar wykorzystać w swoim reaktorze paliwo wodorowo-borowe (p-B11). To, zdaniem firmy, najczystsze, najbezpieczniejsze i najbardziej przyjazne środowisku paliwo, jakie można wykorzystać w czasie fuzji.
      W technice FRC plazma samodzielnie się organizuje i generuje własne pole magnetyczne wewnątrz reaktora, co znacząco zmniejsza zapotrzebowanie na zewnętrzne magnesy i ułatwia działanie reaktora. Sam reaktor jest też prostszy, więc tańszy i łatwiejszy w budowie czy utrzymaniu. Przełom, ogłoszony przez TAE Technologies, polega na rozwiązaniu wcześniejszych problemów z wygenerowaniem i utrzymaniem plazmy, co osiągnięto dzięki wstrzyknięciu wiązki neutralnej wiązki cząstek.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...