Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

NASA chce mieć elektrownię atomową na Księżycu

Recommended Posts

NASA i Idaho National Laboratory (INL) ogłosiły, że szukają pomysłów nad zapewnieniem dostępu do energii atomowej na Księżycu. Uruchomienie na Księżycu stabilnego systemu dostarczania energii jest kluczowym elementem w załogowej eksploracji kosmosu. To cel, który znajduje się w naszym zasięgu, mówi Sebastian Corbisiero, odpowiedzialny za prowadzenie projektu.

NASA, która chce wykorzystać Księżyc w roli etapu załogowej podróży na Marsa, uważa, że niezależna od dostępu do promieni słonecznych elektrownia atomowa zapewni dostateczną ilość energii, niezależnie od warunków środowiskowych na Księżycu czy Marsie. Amerykański Departament Energii i NASA od pewnego czasu mówią o koncepcji fission surface power. To reaktor atomowy o mocy liczonej w kilowatach. Dzięki rozszczepieniu jąder uranu miałby on zapewniać co najmniej 10 kilowatów mocy.

W porównaniu z ziemskimi reaktorami nie wydaje się to dużo, jednak jest to wystarczająca ilość energii na potrzeby misji kosmicznych. Tym bardziej, że system taki miałby być skalowalny, zapewniając stałą ilość energii np. niewielkim bazom kosmicznym czy miejscom produkcyjnym.

Myślę, że taki system odegra olbrzymią rolę na Księżycu i Marsie, a podczas jego opracowywania powstaną rozwiązania, które przydadzą się również na Ziemi, mówi Jim Reuter z Dyrektoriatu Technologii Misji Kosmicznych NASA. Reaktor miałby powstać na Ziemi, skąd zostanie przetransportowany na Księżyc.

Warunki graniczne, jakie określiły NASA i INL, mówią o tym, że system powinien składać się z rdzenia wypełnionego uranem, systemem konwersji energii w użyteczną formę, systemami chłodzenia oraz dystrybucji energii. Całość ma w systemie ciągłym zapewniać 40 KW mocy i pracować na Księżycu przez 10 lat. Ponadto reaktor powinien pracować bez nadzoru człowieka, być w stanie samodzielnie włączać się i wyłączać, musi mieć możliwość pracy z pokładu księżycowego lądownika, ale jednocześnie musi znajdować się namobilnej platformie, którą można będzie ustawić w dowolnym miejscu. Dodatkowe wymagania dotyczą jego wagi i wymiarów. W czasie wystrzelenia z Ziemi reaktor powinien zmieścić się w obudowie o średnicy 4 i długości 6 metrów. Nie może ważyć więcej niż 6000 kilogramów.

Wstępne propozycje dotyczące konstrukcji takiego systemu powinny być zgłoszone do 19 lutego przyszłego roku.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA i DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) poinformowały o rozpoczęciu współpracy, której celem jest zbudowanie jądrowego silnika termicznego (NTP) dla pojazdów kosmicznych. Współpraca będzie odbywała się w ramach programu DRACO (Demonstration Rocket for Agile Cislunar Operations), który od jakiegoś czasu prowadzony jest przez DARPA.
      Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
      Administrator NASA Bill Nelson powiedział, że silnik może powstać już w 2027 roku. Ma on umożliwić szybsze podróżowanie w przestrzeni kosmicznej, co ma olbrzymie znacznie dla bezpieczeństwa astronautów. Skrócenie czasu lotu np. na Marsa oznacza, że misja załogowa mogłaby zabrać ze sobą mniej zapasów, ponadto im krótsza podróż, tym mniejsze ryzyko, że w jej trakcie dojdzie do awarii. Jądrowy silnik termiczny może być nawet 4-krotnie bardziej wydajny niż silnik chemiczny, a to oznacza, że napędzany nim pojazd będzie mógł zabrać cięższy ładunek i zapewnić więcej energii dla instrumentów naukowych. W silniku takim reaktor jądrowy ma być wykorzystywany do generowania ekstremalnie wysokich temperatur. Następnie ciepło z reaktora trafiałoby do ciekłego paliwa, które – gwałtownie rozszerzając się i uchodząc z duża prędkością przez dysze – będzie napędzało pojazd.
      To nie pierwsza amerykańska próba opracowania jądrowego silnika termicznego. Na początku lat 60. ubiegłego wieku rozpoczęto projekt NERVA (Nuclear Engine for Rocket Vehicle Application). Projekt zaowocował powstaniem pomyślnie przetestowanego silnika. Jednak ze względu na duże koszty, prace nad silnikiem zakończono po 17 latach badań i wydaniu około 1,4 miliarda USD.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Artemis I w końcu wystartowała. Po dwukrotnym przekładaniu startu i wielotygodniowych oczekiwaniach, rozpoczęła się misja, której celem jest podróż pojazdu załogowego Orion poza Księżyc i powrót na Ziemię.
      Silniki SLS zostały uruchomione o godzinie 7:47 czasu polskiego. Orion już oddzielił się od SLS i kontynuuje lot samodzielnie. Będzie się przy tym wspomagał jednym dużym silnikiem, który w najbliższym czasie zostanie uruchomiony dwukrotnie. W końcu, około 2 godzin od startu, silnik odłączy się od pojazdu, a Orion będzie kontynuował podróż. Przeleci około 2 milionów kilometrów i znajdzie się 450 600 kilometrów od Ziemi. To dalej niż jakikolwiek inny pojazd załogowy wysłany przez człowieka. Przeleci wokół Księżyca i wróci na naszą planetę. Jego podróż potrwał około 25,5 doby. Planuje się, że 11 grudnia wyląduje na powierzchni Pacyfiku niedaleko wybrzeży San Diego.
      Orion wejdzie w atmosferę z prędkością 39 400 km/h, a jego osłona termiczna rozgrzeje się do temperatury 2760 stopni Celsjusza. To połowa temperatury powierzchni Słońca. Dzięki tarciu atmosfery Orion zwolni do prędkości 520 km/h. Wtedy, w bardzo precyzyjnie ustalonej kolejności, rozwinie się 11 spadochronów, które spowolnią pojazd do 27 km/h i z taką prędkością uderzy on w powierzchnię oceanu.
      W czasie misji inżynierowie będą szczegółowo śledzili parametry pojazdu. Uzyskane w ten sposób informacje przydadzą się podczas planowanej na rok 2024 załogowej Artemis II. Podąży ona mniej więcej tą samą trasą, co Artemis I, ale z ludźmi na pokładzie. Kilka lat później będzie miała misja Artemis III, w ramach której ludzie powrócą na Księżyc.
      Obecnie (58 minut po starcie) Orion znajduje się w odległości niemal 404 000 kilometrów od Księżyca i się od niego oddala. Pojazd porusza się z prędkością niemal 24 000 km/h. Można go na bieżąco śledzić na uruchomionej przez NASA witrynie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wczoraj rozpoczął pracę powołany przez NASA 16-osobowy zespół, którego zadaniem jest prowadzenie niezależnych badań nad niezidentyfikowanymi zjawiskami powietrznymi (UAP). Jako UAP definiowane są obserwacje zjawisk, których nie można zidentyfikować jako statek powietrzny lub znane zjawisko atmosferyczne. Wstępna faza pracy zespołu potrwa 9 miesięcy.
      W tym czasie, na podstawie danych z cywilnych agend rządowych, z przedsiębiorstw prywatnych i innych źródeł członkowie zespołu mają opracować plan dalszych działań analizujących UAP. Zespół skupi się na analizie danych jawnych, a pełny raport z jego pracy zostanie opublikowany w połowie przyszłego roku. Prace mają położyć podwaliny pod badania UAP przez NASA i inne organizacje. Będą one niezależne od badań prowadzonych przez Pentagon.
      W 2021 roku ukazał się rządowy raport dotyczący 144 niezidentyfikowanych obiektów latających. Spotkał się on z olbrzymim zainteresowaniem, w maju Kongres zorganizował publiczne przesłuchanie dotyczące UAP, a niedługo później Pentagon ogłosił powołanie specjalnego biura badającego UAP. Dotychczas jednak większość badań tego typu jest jednak prowadzonych przez wojsko i służby wywiadowcze. NASA chce przyjrzeć się UAP z czysto naukowego punktu widzenia. Wyjaśnienie takich zjawisk może mieć bowiem znaczenie dla bezpieczeństwa ruchu lotniczego. Dlatego też przedstawiciele zespołu nie stawiają żadnych wstępnych hipotez. Jego przewodniczący mówi, że brak dowodów, by UAP miały pochodzenie pozaziemskie, ale przyznaje, że są to zjawiska, których nie rozumiemy. Chcemy zebrać więcej dowodów, stwierdza.
      Na czele zespołu stanął fizyk teoretyczny David Spergel. Obecnie jest prezydentem Simons Foundation, a w przeszłości był założycielem i dyrektorem Flatiron Institute for Computational Astrophysics. Jednym z jego współpracowników jest profesor Anamaria Berena, która pracuje m.in. dla SETI Institute i Blue Marble Space Institute of Science, gdzie specjalizuje się w zagadnieniach komunikacji złożonych systemów biologicznych, astrobiologią i poszukiwaniem bio- oraz technosygnatur. Z kolei Federica Bianco to profesor fizyki i astrofizyki w University of Delaware i zastępca głównego naukowca tworzonego właśnie Vera C. Rubin Observatory. W zespole znajdziemy też profesor oceanografii Paulę Bontempi, która przez 18 lat pracowała a NASA, gdzie kierowała badaniami nad oceanami. Z kolei Reggie Brothers od wielu lat zajmuje stanowiska menedżerskie w sektorze prywatnym, wcześniej zaś był podsekretarzem ds. nauki i technologii w Departamencie Bezpieczeństwa Wewnętrznego i zastępcą sekretarza obrony ds. badawczych w Pentagonie. Do zespołu powołano też byłego astronautę Scotta Kelly'ego, dziennikarkę naukową Nadię Drake czy Matta Mountaina, prezydenta The Association of Universities for Research and Astronomy, konsorcjum niemal 50 uniwersytetów i instytucji badawczych, które pomagają NASA w budowie i obsłudze obserwatoriów, w tym Teleskopów Hubble'a i Webba.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA i SpaceX podpisały umowę, na podstawie którego zobowiązały się do opracowania studium wykonalności wprowadzenia Teleskopu Hubble'a na wyższą orbitę. Umieszczenie tam zasłużonego instrumentu wydłużyłoby jego czas pracy o wiele lat. Studium ma rozważyć wykorzystanie pojazdu SpaceX Dragon do zmiany orbity Hubble'a. Założono, że strona rządowa nie będzie ponosiła w związku z tym żadnych kosztów. NASA chce lepiej zrozumieć komercyjne aspekty takich działań, a SpaceX – kwestie techniczne związane z serwisowaniem urządzeń w przestrzeni kosmicznej. Co istotne, SpaceX nie ma wyłączności, więc inne firmy mogą zwracać się do NASA z własnymi propozycjami.
      Przyjęto, że opracowanie planów potrwa pół roku. W tym czasie eksperci NASA i SpaceX, na podstawie danych technicznych Hubble'a i Dragona rozważą, czy możliwe byłoby bezpieczne zadokowanie kapsuły do teleskopu i przesunięcie go na inną orbitę.
      Hubble i Dragon będą modelami testowymi studium, jednak przynajmniej część płynących z niego wniosków może posłużyć do podobnych działań z wykorzystaniem innych pojazdów i urządzeń znajdujących się na niskiej orbicie okołoziemskiej.
      Teleskop Hubble'a pracuje od 1990 roku. To jedyny teleskop kosmiczny zbudowany z misją o prowadzeniu misji serwisowych. Dotychczas odbyło się do niego 5 takich misji. Jednak Teleskop projektowano tak, by można było przeprowadzać misje za pomocą promów kosmicznych. Program promów został dawno zakończony i obecnie nie ma planów prowadzenia kolejnych misji. Tym bardziej, że czas Hubble'a się kończy. Zasłużone urządzenie pracuje wyjątkowo długo. Obecnie przewiduje się, że teleskop zostanie poddany deorbitacji pomiędzy rokiem 2030 a 2040. NASA chce, by działał on najdłużej, jak to możliwe. Tym bardziej, że nowe teleskopy kosmiczne, jak Teleskop Webba, nie mają go zastąpić, a już przed laty przewidywano, że tandem Webb-Hubble da nowe możliwości obserwowania kosmosu.
      Jeśli udałoby się przesunąć Hubble'a na wyższą orbitę, NASA i SpaceX zyskałyby nowe dane i doświadczenie dotyczące tego typu misji, a przy okazji udałoby się wydłużyć czas pracy ważnego instrumentu naukowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowie NASA rozpoczęli naprawę miejsca wycieku wodoru i mają nadzieję, że misja Artemis I będzie mogła wystartować już 23 września. Podczas gdy Amerykanie, nie bez przeszkód, dokonują kolejnych kroków w dziedzinie podboju kosmosu, dystans do nich starają się nadrobić Chińczycy. Ich ambity program związany z Księżycem szybko posuwa się naprzód. Na rok 2024 zaplanowali misję Chang'e-6 i chcą, jako pierwsi w historii, przywieźć próbki z niewidocznej z Ziemi strony Srebrnego Globu.
      Państwo Środka ma podstawy do optymizmu. W 2019 roku w ramach misji Chang'e-4 przeprowadzili pierwsze w historii lądowanie na niewidocznej stronie Księżyca. Było to możliwe dzięki wcześniejszemu umieszczeniu satelity komunikacyjnego w punkcie L2 (punkcie Lagrange'a) systemu Ziemie-Księżyc. Satelita tan przekazywał sygnały między Chang'e-4 a Ziemią.
      Rok później z powodzeniem przeprowadzili misję Chang'e-5 w ramach której na Ziemię zostały przywiezione pierwsze od ponad 40 lat próbki materiału z Księżyca. Misja była bardzo skomplikowana. Wykorzystano podczas niej orbiter, lądownik, pojazd startujący z powierzchni Srebrnego Globu oraz kapsułę powracającą z próbkami na Ziemię. Pekin przeprowadził automatyczne dokowanie na orbicie Księżyca, dzięki czemu można było przetestować technologie potrzebne podczas planowanej przed końcem dekady misji załogowej na Srebrny Glob.
      Misja Chang'e-6 ma wyląować w Basenie Biegun Południowy - Aitken. To największy krater uderzeniowy. Jest tak wielki, że mogą znajdować się tam skały pochodzące z głębokości dziesiątków kilometrów. Ponadto przed trzema laty naukowcy z Baylor University zidentyfikowali pod kraterem tajemniczą masę. Może to być pozostałość po asteroidzie, której uderzenie utworzyło krater. Przywiezione stamtąd próbki mogłyby dać odpowiedzi na wiele pytań dotyczących ewolucji Srebrnego Globu.
      Również na rok 2024 zaplanowana jest misja Chang'e-7. Ma ona lądować w okolicy, w której może też w przyszłości lądować załogowa misja Artemis 3. Celem tej misji będzie badanie zacienionych kraterów, w którym może znajdować się zamarznięta woda. Trzy lata później na Księżycu ma lądować Chang'e-8. Będzie ona prowadziła eksperymenty związane z wykorzystaniem miejscowych zasobów przez przyszłe misje załogowe.
      Żeby spełnić te ambitne zamierzenia Chiny potrzebują potężniejszych rakiet. W planach jest przygotowanie statku kosmicnego złożonego z trzech stopni głównych rakiety Long March 5 i poprawienie wydajności silników. Ma powstać rakieta zdolna do zabrania w okolice Księżyca ładunku o masie 27 ton. To mniej więcej tyle, co obecne możliwości SLS wykorzystywanej w programie Artemis. Przed rokiem 2030 mają się odbyć dwa loty takiej rakiety.
      Jeśli jednak Chiny myślą o budowie infrastruktury na Księżycu, Państwo Środka będzie potrzebowało potrzebowało znacznie potężniejszego pojazdu kosmicznego. Long March 9 ma być w stanie zabrać w podróż do Księżyca 50 ton ładunku. Jej zbudowanie będzie wymagało od chińskich inżynierów dokonania olbrzymich postępów technologicznych oraz wzniesienia nowego kompleksu startowego. Amerykanie zapowiadają, że rakietę zdolną do wyniesienia na Księżyc ponad 46 ton ładunku będą mieli w roku 2026. Chińczycy na Długi Marsz 9 będą musieli poczekać jeszcze wiele lat, ale Państwo Środka szybko nadrabia zaległości.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...