Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Ważny krok w kierunku znalezienia biosygnatur życia w kosmosie
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Inżynierowie lotniczy i kosmiczni z MIT odkryli, że sposób, w jaki emisja gazów cieplarnianych wpływa na atmosferę, zmniejszy liczbę satelitów, które można będzie umieścić na niskiej orbicie okołoziemskiej (LEO). Na łamach Nature Sustainability stwierdzają, że rosnąca emisja gazów cieplarnianych zmniejsza zdolność atmosfery do usuwania odpadków krążących wokół Ziemi.
Badacze zauważyli, że dwutlenek węgla i inne gazy cieplarniane powodują, iż górne warstwy atmosfery się kurczą. Głównie interesuje ich termosfera, w której krąży Międzynarodowa Stacja Kosmiczna i większość satelitów. Gdy termosfera się kurczy, jej zmniejszająca się gęstość prowadzi do zmniejszenia oporów, a to właśnie opór aerodynamiczny jest tym czynnikiem, który powoduje, że kosmiczne śmieci – chociażby pozostałości po nieczynnych satelitach – opadają w kierunku Ziemi i płoną w atmosferze. Mniejszy opór oznacza, że odpady takie będą dłużej znajdowały się na orbicie, zatem ich liczba będzie rosła, a to zwiększa ryzyko kolizji z działającymi satelitami i innymi urządzeniami znajdującymi się w tych samych rejonach.
Naukowcy przeprowadzili symulacje, których celem było sprawdzenie, jak emisja dwutlenku węgla wpłynie na górne partie atmosfery i astrodynamikę. Wynika z nich, że do roku 2100 pojemność najpopularniejszych regionów orbity zmniejszy się o 50–66 procent właśnie z powodu gazów cieplarnianych.
Nasze zachowanie na Ziemi w ciągu ostatnich 100 lat wpływa na to, w jaki sposób będziemy używali satelitów przez kolejnych 100 lat, mówi profesor Richard Linares z Wydziału Aeronautyki i Astronautyki MIT. Emisja gazów cieplarnianych niszczy delikatną równowagę górnych warstw atmosfery. Jednocześnie gwałtownie rośnie liczba wystrzeliwanych satelitów, szczególnie telekomunikacyjnych, zapewniających dostęp do internetu. Jeśli nie będziemy mądrze zarządzali satelitami i nie ograniczymy emisji, orbita stanie się zbyt zatłoczona, co będzie prowadziło do większej liczby kolizji i większej liczby krążących na niej szczątków, dodaje główny autor badań, William Parker.
Termosfera kurczy się i rozszerza w 11-letnich cyklach, związanych z cyklami aktywności słonecznej. Gdy aktywność naszej gwiazdy jest niska, do Ziemi dociera mniej promieniowania, najbardziej zewnętrzne warstwy atmosfery tymczasowo się ochładzają i kurczą. W okresie zwiększonej aktywności słonecznej są one cieplejsze i rozszerzają się.
Już w latach 90. naukowcy stworzyli modele, z których wynikało, że w miarę ocieplania się klimatu na Ziemi, górne warstwy atmosfery będą się schładzały, co doprowadzi do kurczenia się termosfery i zmniejszania jej gęstości.
W ciągu ostatniej dekady nauka zyskała możliwość precyzyjnych pomiarów oporu aerodynamicznego działającego na satelity. Pomiary te pokazały, że termosfera kurczy się w odpowiedzi na zjawisko wykraczające poza naturalny 11-letni cykl. Niebo dosłownie spada, w tempie liczonych w dziesięcioleciach. A widzimy to na podstawie zmian oporów doświadczanych przez satelity, wyjaśnia Parker.
Naukowcy z MIT postanowili sprawdzić, w jaki sposób to zmierzone zjawisko wpłynie na liczbę satelitów, które można bezpiecznie umieścić na niskiej orbicie okołoziemskiej. Ma ona wysokość do 2000 kilometrów nad powierzchnią Ziemi. Obecnie na orbicie tej znajduje się ponad 10 000 satelitów. Ich liczba jest już tak duża, że operatorzy satelitów standardowo muszą wykonywać manewry unikania kolizji. Każda taka kolizja oznacza nie tylko zniszczenie satelity, ale też pojawienie się olbrzymiej liczby szczątków, które będą krążyły na orbicie przez kolejne dekady i stulecia, zwiększając ryzyko kolejnych kolizji.
W ciągu ostatnich 5 lat ludzkość umieściła na LEO więcej satelitów, niż przez wcześniejszych 60 lat. Jednym z głównych celów badań było sprawdzenie, czy sposób, w jaki obecnie prowadzimy działania na niskiej orbicie okołoziemskiej można będzie utrzymać w przyszłości. Naukowcy symulowali różne scenariusze emisji gazów cieplarnianych i sprawdzali, jak wpływa to na gęstość atmosfery i opór aerodynamiczny. Następnie dla każdego z tych scenariuszy sprawdzali jego wpływ na astrodynamikę i ryzyko kolizji w zależności od liczby obiektów znajdujących się na orbicie. W ten sposób obliczali „zdolność ładunkową” orbity. Podobnie jak sprawdza się, ile osobników danego gatunku może utrzymać się w danym ekosystemie.
Z obliczeń wynika, że jeśli emisja gazów cieplarnianych nadal będzie rosła, to liczba satelitów, jakie można umieścić na wysokości od 200 do 1000 kilometrów nad Ziemią będzie o 50–66 procent mniejsza niż w scenariuszu utrzymania poziomu emisji z roku 2000. Jeśli „zdolność ładunkowa” orbity zostanie przekroczona, nawet lokalnie, dojdzie do całej serii kolizji, przez co pojawi się tyle szczątków, że orbita stanie się bezużyteczna.
Autorzy badań ostrzegają, że niektóre regiony orbity już zbliżają się do granicy ich „zdolności ładunkowej”. Dzieje się tak głównie przez nowy trend, budowanie megakonstelacji olbrzymiej liczby małych satelitów, takich jak Starlink SpaceX.
Polegamy na atmosferze, która oczyszcza orbitę z pozostawionych przez nas odpadów. Jeśli atmosfera się zmienia, zmienia się też środowisko, w którym znajdują się odpady. Pokazujemy, że długoterminowe możliwości usuwania odpadów z orbity są uzależnione od zmniejszenia emisji gazów cieplarnianych, podsumowuje Richard Linares.
Specjaliści szacują, że obecnie na orbicie znajduje się 40 500 odpadków o rozmiarach większych niż 10 cm, 1 milion 100 tysięcy odpadków wielkości od 1 do 10 cm oraz 130 milionów śmieci wielkości od 1 mm do 1 cm. Nawet te najmniejsze odpady stanowią duże zagrożenie. Średnia prędkość kolizji, do jakich między nimi dochodzi, to 11 km/s czyli około 40 000 km/h.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy przeprowadzono trójwymiarowe obserwacje atmosfery planety pozasłonecznej. Dokonał tego międzynarodowy zespół złożony z naukowców ze Szwajcarii, Francji, Hiszpanii, Chile, Kanady, Szwecji, USA i Portugalii wykorzystując wszystkie cztery duże teleskopy tworzące Very Large Telescope (VLT) Europejskiego Obserwatorium Południowego. Celem badań był ultragorący jowisz WASP-121b, położony 900 lat świetlnych od Ziemi w Gwiazdozbiorze Rufy. Znajduje się tak blisko gwiazdy, że obiega ją w 30 godzin.
Niezwykłą atmosferę WASP-121b opisywaliśmy wcześniej w tekście Potężny wiatr i deszcz z kamieni szlachetnych, pierwszy dokładny obraz nocnej strony egzoplanety. Teraz udało się ją zbadać w 3D.
Ultragorące jowisze, ekstremalna klasa planet nieobecna w Układzie Słonecznym, dają wyjątkowy wgląd w procesy atmosferyczne. Ekstremalne różnice temperatur pomiędzy stroną dzienną a nocną każą zadać sobie fundamentalne pytanie: jak jest tam rozłożona energia? Aby na nie odpowiedzieć, musimy obserwować trójwymiarową strukturę ich atmosfer, szczególnie zaś ich cyrkulację pionową, która może posłużyć jako test zaawansowanych Globalnych Modeli Cyrkulacji, stwierdzili autorzy badań.
Naukowcy zajrzeli w głąb atmosfery planety i zauważyli wiatry wiejące w różnych jej warstwach. Stworzyli dzięki temu trójwymiarową najbardziej szczegółową mapę atmosfery egzoplanety.
To, co zobaczyliśmy, zaskoczyło nas. Prąd strumieniowy niesie materiał wokół równika planety, a w niższych warstwach atmosfery ma miejsce inny przepływ, który przemieszcza gazy ze strony gorącej na zimną. Nigdy wcześniej, na żadnej planecie, nie obserwowaliśmy takiego klimatu, mówi Julia V. Seidel z francuskiego Observatoire de la Côte d’Azur. Zaobserwowany prąd strumieniowy rozciąga się na połowę planety, znacząco przyspieszając i gwałtownie skłębiając wysokie partie atmosfery, gdy przekracza gorącą stronę planety. W porównaniu z nim, nawet najpotężniejsze huragany Układu Słonecznego wydają się spokojnymi podmuchami, dodaje Seidel.
VLT pozwolił nam na jednoczesne śledzenie trzech różnych warstw atmosfery, cieszy się Leonardo A. dos Santos ze Space Telescope Science Institute w USA. Uczeni śledzili przemieszczanie się w atmosferze żelaza, sodu i wodoru, dzięki czemu mogli obserwować dolną, średnią i górną warstwę. Tego typu obserwacje trudno jest wykonać za pomocą teleskopów w przestrzeni kosmicznej, co pokazuje, jak ważne są naziemne badania egzoplanet, dodaje uczony.
Niespodzianką była obecność tytanu, który zauważono pod obserwowanym prądem strumieniowym. Wcześniejsze badania nie wykazały obecności tego pierwiastka. Prawdopodobnie dlatego, że jest ukryty w głębokich warstwach atmosfery.
Niezwykłym osiągnięciem jest możliwość tak szczegółowego badania atmosfery planet położonych tak daleko od Ziemi, ich składu chemicznego i wzorców pogodowych. Jednak do zbadania egzoplanet wielkości Ziemi konieczne będą większe teleskopy. Jednym z nich może być Extremely Large Telescope (ELT), budowany przez Europejskie Obserwatorium Południowe na pustyni Atacama.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba po raz pierwszy został użyty do potwierdzenia istnienia egzoplanety, planety obiegającej inną gwiazdę niż Słońce. Planeta LHS 475 b jest niemal identycznej wielkości, co Ziemia. Jej średnica wynosi 99% średnicy naszej planety.
Kevin Stevenson i Jacob Lustig-Yaeger z Applied Physics Laboratory Uniwersytetu Johnsa Hopkinsa postanowili wykorzystać Webba do potwierdzenia istnienia planety pozasłonecznej. Starannie wybrali cel swoich obserwacji i po zaledwie dwóch tranzytach, wykorzystując zamontowany na Webbie NIRSpec (Near-Infrared Spectrograph) byli w stanie potwierdzić, że wytypowany obiekt to rzeczywiście planeta. Nie ma co do tego wątpliwości. Dane z Webba to potwierdzają. Fakt, że to mała skalista planeta tylko pokazuje możliwości obserwatorium, stwierdził Stevenson.
Eksperci zauważają, że tak jednoznaczne i dobrej jakości dane przekazane przez Teleskop Webba, a dotyczące skalistej planety wielkości Ziemi to kolejny dowód, że Teleskop otwiera przed nauką zupełnie nowe możliwości w dziedzinie badania atmosfer egzoplanet. Webb przybliża nas do lepszego zrozumienia planet podobnych do Ziemi, znajdujących się poza Układem Słonecznym. A jego misja dopiero się rozpoczęła, powiedział Mark Clampin, dyrektor Wydziału Astrofizyki w NASA.
Webb to jedyny teleskop zdolny do badania atmosfer egzoplanet wielkości Ziemi.
Naukowcy próbują teraz zbadać atmosferę LHS 475 b. Na razie nie wiedzą, czy w ogóle ma ona atmosferę. Jednak dzięki danym z Webba już są w stanie wykluczyć różne rodzaje atmosfer. Wiadomo, że planeta nie ma na przykład gęstej zdominowanej przez metan atmosfery, jak księżyc Saturna Tytan. Możliwe, że w ogóle nie ma atmosfery lub też jej atmosfera składa się np. wyłącznie z dwutlenku węgla. Na razie Webb dostarczył zbyt małej ilości danych. Pozwolił natomiast stwierdzić, że powierzchnia planety jest o kilkaset stopni cieplejsza, niż powierzchnia Ziemi. Jeśli wykryjemy chmury, będzie można przypuszczać, że LHS 475 b jest podobna do Wenus.
Wiemy również, że planeta obiega swoją gwiazdę w ciągu zaledwie dwóch dni. Jest więc bliżej gwiazdy, niż Merkury Słońca, jednak jej gwiazda to czerwony karzeł dwukrotnie chłodniejszy od Słońca, zatem naukowcy spodziewają się, że mimo niewielkiej odległości od gwiazdy planeta może posiadać atmosferę.
Badana planeta znajduje się dość blisko, w odległości 41 lat świetlnych od Ziemi, w Gwiazdozbiorze Oktanta.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.