Zobrazowali niezwykły stan materii – kryształ Wignera
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcom z University of Sheffield udało się rozwiązać jedną z zagadek ewolucji galaktyk. Zauważyli oni, że supermasywne czarne dziury znajdujące się w centrach niektórych galaktyk przyspieszają olbrzymie strumienie wodoru molekularnego wydobywające się z galaktyki. Jako, że wodór jest potrzebny do formowania się gwiazd, zjawisko powyższe ma bezpośredni wpływ na ewolucję galaktyk.
Ucieczka wodoru z galaktyk jest jednym z elementów uwzględnianych w modelach teoretycznych, jednak dotychczas nie było wiadomo, w jaki sposób strumienie gazu są przyspieszane.
Brytyjscy uczeni, wykorzystując Very Large Telescope zauważyli, że w pobliskiej galaktyce IC5063 molekularny wodór jest przyspieszany przez dżety elektronów do około 1 miliona kilometrów na godzinę. Elektrony, poruszające się niemal z prędkością światła, są z kolei napędzane przez czarną dziurę. Przyspieszanie gazu ma miejsce w obszarze, gdzie jest go bardzo dużo.
Odkrycie pozwala nam lepiej zrozumieć, jaka przyszłość czeka Drogę Mleczną. Za około 4 miliardy lat zderzy się ona z Galaktyką Andromedy. Można zatem przypuszczać, że mocno skoncentrowany gaz, który pojawi się w centrum takiego systemu dwóch galaktyk, będzie napędzany przez czarną dziurę i zostanie wyrzucony z galaktyki.
Profesor Clive Tadhunter zauważa, że molekularny wodór stanowi większość z przyspieszanej materii. Tymczasem jest to niezwykle delikatny gaz, który ulega zniszczeniu już przy niskoenergetycznych oddziaływaniach. To niezwykłe, że ten gaz molekularny może przetrwać spotkanie z dżetami elektronów poruszającymi się z prędkością bliską prędkości światła.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od wystrzelenia Voyagerów minęło ponad 40 lat, a sondy wciąż dokonują odkryć naukowych. Fizycy z University of Iowa poinformowali, że instrumenty na obu Voyagerach zarejestrowały elektrony przyspieszone przez fale uderzeniowe pochodzące z dużych rozbłysków na Słońcu. Elektrony przemieszczają się niemal z prędkością światła, około 670 razy szybciej niż fala uderzeniowa, która je przyspieszyła.
Po nagłym przyspieszeniu elektronów zarejestrowano oscylacje fal plazmy wywołane elektronami o niskich energiach, które dotarły do czujników Voyagerów kilka dni po przyspieszonych elektronach. W końcu, miesiąc później, Voyagery zarejestrowały samą falę uderzeniową.
Fale uderzeniowe pochodziły z koronalnych wyrzutów masy. Przemieszczają się one z prędkością około 1 600 000 km/h. Nawet tak szybko poruszająca się fala uderzeniowa potrzebuje znacznie ponad roku, by dotrzeć do Voyagerów.
Zidentyfikowaliśmy elektrony, które zostały odbite i przyspieszone przez międzygwiezdne fale uderzeniowe rozprzestrzeniające się na zewnątrz od wysoce energetycznego wydarzenia na Słońcu. To nowy mechanizm, mówi współautor badań, emerytowany profesor Don Gurnett.
Dzięki temu odkryciu fizycy lepiej będą mogli zrozumieć zależność fal uderzeniowych i promieniowania kosmicznego pochodzącego z rozbłysków słonecznych czy eksplodujących gwiazd. Jest to ważne np. z punktu planowania długotrwałych misji załogowych, podczas których astronauci będą narażeni na znacznie wyższe dawki promieniowania niż to, czego doświadczamy na Ziemi.
Fizycy sądzą, że te nagle przyspieszone elektrony w medium międzygwiezdnym są odbijane od wzmocnionych linii pola magnetycznego na krawędzi fali uderzeniowej i przyspieszane przez ruch tej fali. Odbite elektrony poruszają się po spirali wzdłuż międzygwiezdnych linii pola magnetycznego, przyspieszając w miarę oddalania się od czoła fali uderzeniowej.
Sam pogląd, że fale uderzeniowe przyspieszają cząstki nie jest niczym nowym. Zasadniczą sprawą jest tutaj mechanizm oddziaływania. My odkryliśmy go w zupełnie nowym środowisku – przestrzeni międzygwiezdnej – które jest całkowicie różne od wiatru słonecznego, gdzie takie procesy były już obserwowane, dodaje Gurnett.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.