Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' elektrony' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Przed dwoma miesiącami informowaliśmy, że po ponad 80 latach fizykom udało się stworzyć – zbudowany wyłącznie z elektronów – kryształ Wignera. Teraz inna grupa naukowa nie tylko uzyskała kryształ Wignera, ale go też zobrazowała. Możemy więc naocznie przekonać się, jak wygląda ten niezwykły stan materii. A wszystko dzięki pracy zespołu Feng Wanga z University of California w Berkeley. Najpierw, żeby uzyskać kryształ, naukowcy zbudowali urządzenie zawierające atomowej grubości warstwy podobnych półprzewodników: disiarczku wolframu i diselenku wolframu. Następnie za pomocą pola elektrycznego sterowano gęstością elektronów swobodnie poruszających się pomiędzy obiema warstwami. Urządzenie zostało schłodzone do temperatury kilku stopni powyżej zera absolutnego. Dzięki temu i odpowiedniej konstrukcji urządzenia, uzyskano kryształ Wignera. Następnie naukowcy wykorzystali skaningowy mikroskop tunelowy (STM) do jego zobrazowania. W STM przez igłę próbkującą materiał przepuszczany jest prąd. Mikroskop nie rejestruje fizycznego wyglądu próbki, ale tworzy jej obraz poprzez pomiar obsadzonych i nieobsadzonych stanów elektronowych. Pierwsze próby zobrazowania kryształu były nieudane, gdyż prąd niszczył delikatny kryształ. Naukowcy dodali więc warstwę grafenu. Obecność kryształu Wignera pod grafenem nieco zmieniała strukturę elektronową samego grafenu, co mógł badać STM. Jak się spodziewano, kolejne elektrony w krysztale Wignera znajdują się niemal 100-krotnie dalej niż atomy w kryształach wykorzystanych do budowy warstw urządzenia. Carmen Rubio Verdu z Columbia University mówi, że technika z wykorzystaniem grafenu będzie bardzo pomocna również przy badaniu innych materiałów za pomocą STM. To technika nieinwazyjna dla badanego materiału. To bardzo sprytny pomysł, stwierdza Kin Fai Mak, fizyk z Cornell University. « powrót do artykułu
  2. Od wystrzelenia Voyagerów minęło ponad 40 lat, a sondy wciąż dokonują odkryć naukowych. Fizycy z University of Iowa poinformowali, że instrumenty na obu Voyagerach zarejestrowały elektrony przyspieszone przez fale uderzeniowe pochodzące z dużych rozbłysków na Słońcu. Elektrony przemieszczają się niemal z prędkością światła, około 670 razy szybciej niż fala uderzeniowa, która je przyspieszyła. Po nagłym przyspieszeniu elektronów zarejestrowano oscylacje fal plazmy wywołane elektronami o niskich energiach, które dotarły do czujników Voyagerów kilka dni po przyspieszonych elektronach. W końcu, miesiąc później, Voyagery zarejestrowały samą falę uderzeniową. Fale uderzeniowe pochodziły z koronalnych wyrzutów masy. Przemieszczają się one z prędkością około 1 600 000 km/h. Nawet tak szybko poruszająca się fala uderzeniowa potrzebuje znacznie ponad roku, by dotrzeć do Voyagerów. Zidentyfikowaliśmy elektrony, które zostały odbite i przyspieszone przez międzygwiezdne fale uderzeniowe rozprzestrzeniające się na zewnątrz od wysoce energetycznego wydarzenia na Słońcu. To nowy mechanizm, mówi współautor badań, emerytowany profesor Don Gurnett. Dzięki temu odkryciu fizycy lepiej będą mogli zrozumieć zależność fal uderzeniowych i promieniowania kosmicznego pochodzącego z rozbłysków słonecznych czy eksplodujących gwiazd. Jest to ważne np. z punktu planowania długotrwałych misji załogowych, podczas których astronauci będą narażeni na znacznie wyższe dawki promieniowania niż to, czego doświadczamy na Ziemi. Fizycy sądzą, że te nagle przyspieszone elektrony w medium międzygwiezdnym są odbijane od wzmocnionych linii pola magnetycznego na krawędzi fali uderzeniowej i przyspieszane przez ruch tej fali. Odbite elektrony poruszają się po spirali wzdłuż międzygwiezdnych linii pola magnetycznego, przyspieszając w miarę oddalania się od czoła fali uderzeniowej. Sam pogląd, że fale uderzeniowe przyspieszają cząstki nie jest niczym nowym. Zasadniczą sprawą jest tutaj mechanizm oddziaływania. My odkryliśmy go w zupełnie nowym środowisku – przestrzeni międzygwiezdnej – które jest całkowicie różne od wiatru słonecznego, gdzie takie procesy były już obserwowane, dodaje Gurnett. « powrót do artykułu
  3. Naukowcom z University of Sheffield udało się rozwiązać jedną z zagadek ewolucji galaktyk. Zauważyli oni, że supermasywne czarne dziury znajdujące się w centrach niektórych galaktyk przyspieszają olbrzymie strumienie wodoru molekularnego wydobywające się z galaktyki. Jako, że wodór jest potrzebny do formowania się gwiazd, zjawisko powyższe ma bezpośredni wpływ na ewolucję galaktyk. Ucieczka wodoru z galaktyk jest jednym z elementów uwzględnianych w modelach teoretycznych, jednak dotychczas nie było wiadomo, w jaki sposób strumienie gazu są przyspieszane. Brytyjscy uczeni, wykorzystując Very Large Telescope zauważyli, że w pobliskiej galaktyce IC5063 molekularny wodór jest przyspieszany przez dżety elektronów do około 1 miliona kilometrów na godzinę. Elektrony, poruszające się niemal z prędkością światła, są z kolei napędzane przez czarną dziurę. Przyspieszanie gazu ma miejsce w obszarze, gdzie jest go bardzo dużo. Odkrycie pozwala nam lepiej zrozumieć, jaka przyszłość czeka Drogę Mleczną. Za około 4 miliardy lat zderzy się ona z Galaktyką Andromedy. Można zatem przypuszczać, że mocno skoncentrowany gaz, który pojawi się w centrum takiego systemu dwóch galaktyk, będzie napędzany przez czarną dziurę i zostanie wyrzucony z galaktyki. Profesor Clive Tadhunter zauważa, że molekularny wodór stanowi większość z przyspieszanej materii. Tymczasem jest to niezwykle delikatny gaz, który ulega zniszczeniu już przy niskoenergetycznych oddziaływaniach. To niezwykłe, że ten gaz molekularny może przetrwać spotkanie z dżetami elektronów poruszającymi się z prędkością bliską prędkości światła. « powrót do artykułu
×
×
  • Dodaj nową pozycję...