Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Hybrydy plug-in emitują znacznie więcej, niż wynika to z założeń i testów laboratoryjnych

Rekomendowane odpowiedzi

Podczas rzeczywistego użytkowania hybrydy plug-in zużywają więcej paliw kopalnych i emitują do atmosfery więcej dwutlenku węgla niż wynika to z badań laboratoryjnych. Częściowo dzieje się tak dlatego, że kierowcy nie wykorzystują napędu elektrycznego tak często, jakby mogli – wynika z badań niemieckich naukowców. Aby zaradzić temu problemowi uczeni proponują wprowadzenie przepisów, które zachęcą właścicieli hybryd do częstszego ich ładowania.

Hybrydy typu plug-in korzystają z silnika spalinowego oraz elektrycznego. Emitują więc mniej szkodliwych gazów do atmosfery, szczególnie jeśli prąd, z którego korzystają, pochodzi z czystych źródeł. Tak mówi teoria i wyniki badań laboratoryjnych. Jednak, jak wynika z nowych badań, rzeczywiste zużycie paliwa i emisja z hybryd zależą od zachowania kierowców oraz tego, jaką część trasy przejeżdżają na silniku elektrycznym.

Dotychczas brakowało jednak danych z rzeczywistego używania samochodów hybrydowych, a dane laboratoryjne budziły liczne kontrowersje. Na przykład w marcu ukazały się badania brytyjskiej organizacji Which?, z których wynikało, że w rzeczywistości hybrydy mogą zużywać nawet 4-więcej paliwa niż wynika z testów w laboratoriach. Najgorzej wypadł tutaj BMW X5, który był aż o 72% mniej efektywny, niż twierdził producent, a roczne koszty paliwa były o 669 funtów wyższe, niż wynikało to z badań w laboratorium.

Patrick Plötz i inni niemieccy naukowcy w Instytutu Fraunhofera przyjrzeli się zużyciu paliwa, liczbie przejeżdżanych kilometrów rocznie oraz częstotliwości użycia silnika elektrycznego w ponad 100 000 hybrydach plug-in używanych w Kanadzie, Chinach, Niemczech, Holandii, Norwegii i USA. Dane pochodziły z wcześniej wykonywanych studiów oraz z baz, do których kierowcy indywidualni oraz firmy posiadające hybrydy mogą wpisywać informacje na temat samochodów.

Analiza danych wykazała, że w rzeczywistości hybrydy plug-in emitują od 50 do 300 gramów CO2/km, czyli 2 do 4 razy więcej niż w testach laboratoryjnych. Zużycie paliwa również było 2 do 4 razy wyższe niż podczas testów, a przyczyną takie stanu rzeczy była niska częstotliwość ładowania samochodów przez kierowców. Plötz mówi, że oficjalne wartości, jakimi posługują się urzędy w wielu krajach – Worldwide harmonized Light-duty vehicles Test Procedure i jego odmiana New European Driving Cycle – bazują na danych z samochodów konwencjonalnych, do których dodano pewne założenia, ale nie dane z rzeczywistego użycia hybryd. Dlatego też założenia dotyczące używania silnika elektrycznego w pluginach są, jak widać, zbyt optymistyczne.

Problem szczególnie jest widoczny w przypadku... samochodów służbowych. Za ich tankowanie płaci firma. Natomiast koszt ładowania akumulatorów zwykle spada na kierowcę. Zatem użytkownicy takich samochodów korzystają niemal wyłącznie z silnika spalinowego. Widoczne są też spore różnice regionalne. Na przykład w Norwegii, gdzie jest drogie paliwo a tani prąd, pluginy częściej jeżdżą na silniku elektrycznym. Co ciekawe, także w USA, kraju, w którym paliwo jest tanie, kierowcy częściej używają silników elektrycznych. Plötz stwierdza, że wielu kierowców z USA w badanej próbce miało wysoką świadomość ekologiczną, co motywowało ich do częstego ładowania i jazdy na silniku elektrycznym.

Naukowcy zaproponowali też rozwiązania problemu. Kierowcy indywidualni potrzebują łatwych do zainstalowania urządzeń ładujących kompatybilnych z domową infrastrukturą elektryczną. Ponadto różnego typu ulgi związane z posiadaniem hybrydy powinny być uzależnione od rzeczywistego wykorzystania silnika elektrycznego. Z kolei posiadaczy służbowych hybrydy powinno się zachęcać do ładowania samochodu w domu. Mogliby np. mieć dzięki temu tańszy prąd. Nie powinni też mieć możliwości nieograniczonego bezpłatnego tankowania.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ameryki nie odkryli. Pusty AKU to transformacja hybrydy w klasyczny spalinowy samochód. A baterii w hybrydzie pewnie wystarcza na 100-200 km, jak się w optymalnym zakresie jedzie

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Baterii w hybrydzie plug-in to starcza na maks 60km, i to 60 laboratoryjne "w lecie", a nie rzeczywiste.

Natomiast tego typu samochody nie powinny być kupowane jako służbowe itp., bo z założenia są to "ekologiczne samochody do miasta", ale z możliwością wyjechania w trasę "od święta", a nie jako służbówki do "rozbijania się" w tysiące kilometrów miesięcznie. Ba, oni może by nawet ładowali, ale może nie mają na to czasu?

Także zrobiłbym preferencje dla uzytkowników indywidualnych, a na służbówki niech kupują elektryki albo na wodór (jak chcą mieć ekologię).

Dodatkowo, artykuł, a zwłaszcza niepotrzebne wytłuszczenie sugeruje, że to plug-iny są "be"

W dniu 5.05.2021 o 12:01, KopalniaWiedzy.pl napisał:

hybrydy plug-in zużywają więcej paliw kopalnych i emitują do atmosfery więcej dwutlenku węgla niż wynika to z badań laboratoryjnych. Częściowo dzieje się tak dlatego, że kierowcy nie wykorzystują napędu elektrycznego tak często, jakby mogli

To nie plug-iny są be tylko (niektórzy) kierowcy, którzy nimi jeżdżą nie wykorzystują ich potencjału (z różnych powodów). Na tej samej zasadzie samochody spalinowe emitują znacznie więcej CO2 i innych, bo kierowcy, którzy nimi jeżdżą nie dbają o ich stan techniczny, konserwację, etc. Do tego samo badanie moim zdaniem jest "skrzywione", bo w takich systemach na podstawie których robili statystyki figurują właśnie głównie samochody służbowe.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hybrydy z silniczkami 1.2 200 hp, które się rozpadają po 100tyś. albo 1.4 200hp, które się rozpadają po 200kkm. A ja kurna chcę reanimować 23letnie auto na nowych częściach, które ma 450kkm bez remontu i nie mogę części kupić. A elektryki, oczywiście nie zużywają ropy, bo plastiki pewnie ze słońca są zrobione, a akumulatory z wody święconej i mają wieczyste użycie, a jak dojdzie do uszkodzenia ogniw to oczywiście je naprawiają. Kuźwa, 5 elektryków zrobią w czasie użytkowania mojego auta i to jest ta piep* ekologia jeżdżąca w Polsce w 80% na węglu. Dla ekologii to ja jeżdżę rowerem, dlatego auto robi maks. 7kkm rocznie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To drugie badanie z tymi samymi wnioskami. Nie żebym się czepiał BMW, ale ta marka budzi kontrowersje właśnie dlatego że przyciąga ludzi z ciężką nogą i ociężałym umysłem, a dodatkowo większość najmniej trwałych silników ostatnich lat posiada właśnie BMW. Tak samo jak jedne z najgorszych pod względem trwałości zawieszeń. To jakiś fenomen. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W miarę wzrostu globalnych temperatur drzewa będą emitowały więcej izoprenu, który pogorszy jakość powietrza, wynika z badań przeprowadzonych na Michigan State University. Do takich wniosków doszedł zespół profesora Toma Sharkeya z Plant Resilience Institute na MSU. Naukowcy zauważyli, że w wyższych temperaturach drzewa takie jak dąb czy topola wydzielają więcej izoprenu. Mało kto słyszał o tym związku, tymczasem jest to drugi pod względem emisji węglowodór trafiający do atmosfery. Pierwszym jest emitowany przez człowieka metan.
      Sharkey bada izopren od lat 70., kiedy był jeszcze doktorantem. Rośliny emitują ten związek, gdyż pozwala on im radzić sobie z wysoką temperaturą i szkodnikami. Problem w tym, że izopren, łącząc się z zanieczyszczeniami emitowanymi przez człowieka, znacznie pogarsza jakość powietrza. Mamy tutaj do czynienia z pewnym paradoksem, który powoduje, że powietrze w mieście może być mniej szkodliwe niż powietrze w lesie. Jeśli bowiem wiatr wieje od strony miasta w stronę lasu, unosi ze sobą tlenki azotu emitowane przez elektrownie węglowe i pojazdy silnikowe. Tlenki te trafiając do lasu wchodzą w reakcję z izoprenem, tworząc szkodliwe i dla roślin, i dla ludzi, aerozole, ozon i inne związki chemiczne.
      Sharkey prowadził ostatnio badania nad lepszym zrozumieniem procesów molekularnych, które rośliny wykorzystują do wytwarzania izoprenu. Naukowców szczególnie interesowała odpowiedź na pytanie, czy środowisko wpływa na te procesy. Skupili się zaś przede wszystkim na wpływie zmian klimatu na wytwarzanie izoprenu.
      Już wcześniej widziano, że niektóre rośliny wytwarzają izopren w ramach procesu fotosyntezy. Wiedziano też, że zachodzące zmiany mają znoszący się wpływ na ilość produkowanego izoprenu. Z jednej powiem strony wzrost stężenia CO2 w atmosferze powoduje, że rośliny wytwarzają mniej izoprenu, ale wzrost temperatury zwiększał jego produkcję. Zespół Sharkeya chciał się dowiedzieć, które z tych zjawisk wygra w sytuacji, gdy stężenie CO2 nadal będzie rosło i rosły będą też temperatury.
      Przyjrzeliśmy się mechanizmom regulującym biosyntezę izoprenu w warunkach wysokiego stężenia dwutlenku węgla. Naukowcy od dawna próbowali znaleźć odpowiedź na to pytanie. W końcu się udało, mówi główna autorka artykułu, doktor Abira Sahu.
      Kluczowym elementem naszej pracy jest zidentyfikowanie konkretnej reakcji, która jest spowalniana przez dwutlenek węgla. Dzięki temu mogliśmy stwierdzić, że temperatura wygra z CO2. Zanim temperatura na zewnątrz sięgnie 35 stopni Celsjusza, CO2 przestaje odgrywać jakikolwiek wpływ. Izopren jest wytwarzany w szaleńczym tempie, mówi Sharkey. Podczas eksperymentów prowadzonych na topolach naukowcy zauważyli też, że gdy liść doświadcza wzrostu temperatury o 10 stopni Celsjusza, emisja izoprenu rośnie ponad 10-krotnie.
      Dokonane odkrycie można już teraz wykorzystać w praktyce. Chociażby w ten sposób, by w miastach sadzić te gatunki drzew, które emitują mniej izoprenu. Jeśli jednak naprawdę chcemy zapobiec pogarszaniu się jakości powietrza, którym oddychamy, powinniśmy znacząco zmniejszyć emisję tlenków azotu. Wiatr wiejący od strony terenów leśnych w stronę miast będzie bowiem niósł ze sobą izopren, który wejdzie w reakcje ze spalinami, co pogorszy jakość powietrza w mieście.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Paliwa, których używamy, nie są zbyt bezpieczne. Parują i mogą się zapalić, a taki pożar trudno jest ugasić, mówi Yujie Wang, doktorant chemii na Uniwersytecie Kalifornijskim w Riverside. Wang i jego koledzy opracowali paliwo, które nie reaguje na płomień i nie może przypadkowo się zapalić. Pali się jedynie wtedy, gdy przepływa przez nie prąd elektryczny. Palność naszego paliwa jest znacznie łatwiej kontrolować, a pożar można ugasić odcinając zasilanie, dodaje Wang.
      Gdy obserwujemy pożar współcześnie używanych paliw płynnych, to w rzeczywistości widzimy nie palący się płyn, a jego opary. To molekuły paliwa w stanie gazowym zapalają się pod wpływem kontaktu z ogniem i przy dostępie tlenu. Gdy wrzucisz zapałkę do pojemnika z benzyną, to zapalą się jej opary. Jeśli możesz kontrolować opary, możesz kontrolować pożar, wyjaśnia doktorant inżynierii chemicznej Prithwish Biswas, główny autor artykułu opisującego wynalazek.
      Podstawę nowego paliwa stanowi ciesz jonowa w formie upłynnionej soli. Jest podobna do soli stołowej, chlorku sodu. Nasza sól ma jednak niższą temperaturę topnienia, niższe ciśnienie oparów oraz jest organiczna, wyjaśnia Wang. Naukowcy zmodyfikowali swoją ciecz jonową zastępując chlor nadchloranem. Następnie za pomocą zapalniczki spróbowali podpalić swoje paliwo.
      Temperatura płomienia zapalniczki jest wystarczająco wysoka. Jeśli więc paliwo miałoby płonąć, to by się zapaliło, stwierdzają wynalazcy. Gdy ich paliwo nie zapłonęło od ognia, naukowcy przyłożyli doń napięcie elektryczne. Wtedy doszło do zapłonu paliwa. Gdy odłączyliśmy napięcie, ogień gasł. Wielokrotnie powtarzaliśmy ten proces: przykładaliśmy napięcie, pojawiał się dym, podpalaliśmy dym, odłączaliśmy napięcie, ogień znikał. Jesteśmy niezwykle podekscytowani opracowaniem paliwa, które możemy podpalać i gasić bardzo szybko, mówi Wang. Co więcej, im większe napięcie, tym większy pożar, co wiąże się z większym dostarczaniem energii z paliwa. Zjawisko to można więc wykorzystać do regulowania pracy silnika spalinowego. W ten sposób można kontrolować spalanie. Gdy coś pójdzie nie tak, wystarczy odciąć zasilanie, mówi profesor Michael Zachariah.
      Teoretycznie ciecz jonowa nadaje się do każdego rodzaju pojazdu. Jednak zanim nowe paliwo zostanie skomercjalizowane, konieczne będzie przeprowadzenie jego testów w różnych rodzajach silników. Potrzebna jest też ocena jego wydajności.
      Bardzo interesującą cechą nowej cieczy jonowej jest fakt, że można ją wymieszać z już istniejącymi paliwami, dzięki czemu byłyby one niepalne. Tutaj jednak również trzeba przeprowadzić badania, które wykażą, jaki powinien być stosunek cieczy jonowej do tradycyjnego paliwa, by całość była niepalna.
      Twórcy nowego paliwa mówią, że z pewnością, przynajmniej na początku, będzie ono droższe niż obecnie stosowane paliwa. Cieczy jonowych nie produkuje się bowiem w masowych ilościach. Można się jednak spodziewać, że masowa produkcja obniżyłaby koszty produkcji. Główną zaletą ich paliwa jest zatem znacznie zwiększone bezpieczeństwo. Warto bowiem mieć na uwadze, że w ubiegłym roku w Polsce straż pożarna odnotowała 8333 pożary samochodów spalinowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grecja to bardzo popularne miejsce wśród polskich turystów. Najchętniej wybieranymi miastami przez naszych rodaków są Santorini, Korfu oraz Kreta, acz warto pamiętać, że tam dolecieć można jedynie samolotem. Wiele ciekawych miejsc w Grecji znajduje się jednak także w części kontynentalnej, do której możesz dojechać samochodem. O czym warto pamiętać przed wybraniem się w podróż? Sprawdźmy!
      Dlaczego warto pojechać samochodem do Grecji?
      Podróż samochodem do Grecji będzie dobrym rozwiązaniem dla osób, które boją się latać lub chcą po drodze zwiedzić także inne państwa i ich atrakcje. Choć jazda autem do tego kraju sama w sobie trwa długo, to po drodze można zajechać do Słowacji, Serbii, Macedonii lub Węgier. Warto w tych miejscach zatrzymać się na nocleg i zwiedzić najatrakcyjniejsze miasta.
      Jak dojechać autem do Grecji?
      Ze stolicy Polski, Warszawy, do Grecji dojedziesz dwoma trasami. Wybierając krótszą trasę, na podróż poświęcisz około 21 godzin. Jadąc przez Czechy, potrwa ona do 2-3 godziny dłużej. Wszystko zależy jednak także od innych elementów – aktualnych remontów, korków, prędkości jazdy czy ilości postojów, na jakie się zdecydujesz. Trasy mogą wyglądać następująco:
      Czechy – Słowacja – Węgry – Serbia – Macedonia – Grecja, Słowacja – Węgry – Serbia – Macedonia – Grecja. Jeśli ciekawią Cię przykładowe trasy, którymi konkretnie warto się poruszać, przeczytaj w tym poradniku, na jak długą podróż będziesz musiał się przygotować, wyruszając z konkretnego miasta.
      Przejeżdżając przez wyżej wymienione kraje, trzeba będzie też kupić winietę. Możesz tego dokonać online, co ułatwia organizację podróży. Są w tym wypadku jednak wyjątki, czyli Serbia oraz Macedonia. Tam opłatę za przejazd autostradą opłacisz wyłącznie na bramkach.
      Ile kosztuje podróż samochodem do Grecji?
      Koszt podróży zależy głównie od samochodu (pojemności silnika), stylu jazdy, osiąganych prędkości oraz kosztów paliwa. Zakładając, że wybierasz się autem z silnikiem 1,6 litra i wyruszasz z Warszawy do Aten (2300 kilometrów), zapłacisz do 2000 zł w jedną stronę. Pamiętaj, że koszty paliwa mogą być inne każdego dnia, dlatego też dobrze zapoznać się z aktualnymi cenami na stacjach i obliczyć potrzebny budżet.
      Podróż do Grecji samochodem – co warto zobaczyć?
      Jadąc do Grecji autem, warto dobrze wszystko zaplanować, aby skorzystać z różnych atrakcji po drodze i zobaczyć ciekawe miejsca. Dzięki temu przed dotarciem do celu zapewnisz sobie interesujący urlop.
      Jakie przystanki warto zrobić?
      Bratysława (Słowacja) – urocze stare miasto z wąskimi uliczkami i kawiarniami jest zachwycające, a do tego warto też zajrzeć do katedry św. Marcina. Koszyce (Słowacja) – katedra św. Elżbiety, starówka i panorama Koszyc to miejsca, których nie warto pomijać. Budapeszt (Węgry) – w dzielnicy Peszt zajrzyj na Plac Bohaterów i obejrzyj Parlament, a w Budzie zachwyci Cię Góra Gellerta, Zamek Królewski oraz Punkt Widokowy. Skopje (Macedonia) – atrakcjami, które warto zobaczyć, są na pewno Kamienny Most, Twierdza oraz stary bazar. Ubezpieczenie do Grecji
      Wyjeżdżając do Grecji, pamiętaj o ważnym ubezpieczeniu OC. Warto też zaopatrzyć się w AC, które gwarantuje szerszy zakres ochrony. Dobrym pomysłem będzie też ubezpieczenie turystyczne lub karta EKUZ, dzięki której otrzymasz bezpłatną pomoc na takich samych zasadach, co mieszkańcom Grecji. Do tego warto zdecydować się na ubezpieczenie sprzętu sportowego - jakie wybrać? To zależy od zakresu ochrony, której potrzebujesz. Każde towarzystwo ubezpieczeniowe określa, jaki sprzęt może być nim objęty i kiedy wypłacone zostanie odszkodowanie.
      Przepisy drogowe w Grecji – co warto wiedzieć?
      Otrzymanie mandatu na wakacjach nie należy do najprzyjemniejszych i może skutecznie zepsuć wakacje. Dlatego też, zanim wyruszysz samochodem do Grecji, zapoznaj się z podstawowymi przepisami drogowymi, które tam obowiązują. Warto wiedzieć, że na terenie całego państwa obowiązuje ograniczenie prędkości:
      do 50 km/h w terenie zabudowanym, do 90 km/h na terenie niezabudowanym, do 110 km/h na drogach ekspresowych, do 130 km/h na autostradach. Każda osoba w samochodzie musi zapiąć pasy bezpieczeństwa. Do tego w Grecji nie ma obowiązku jazdy w ciągu dnia z włączonymi światłami mijania. Występuje on w nocy i w momencie, gdy warunki na drodze nie są wystarczająco dobre. Ponadto w Twoim bagażniku powinna znaleźć się apteczka, trójkąt ostrzegawczy oraz gaśnica. Polskie prawo jazdy jest oczywiście honorowane.
      Co warto zobaczyć w Grecji?
      Gdy już dojedziesz na miejsce, Twoim obowiązkowym punktem docelowym powinny być Ateny. Stolica Grecji oferuje mnóstwo ciekawych atrakcji, w tym Akropol Ateński, na którym znajdziesz dobrze zachowane świątynie Partenon, Erechtejon, Propyleje, a także Teatr Dionizosa i Odeon Heroda Atticusa. Warto zajrzeć także do Starożytnej Agory i na Plac Syntagma.
      Innym miastem wartym odwiedzenia są Saloniki, czyli druga największa metropolia Grecji. Promenada nadmorska, która się tam znajduje, ma niemal 5 kilometrów. Do tego dobrym pomysłem jest także przejażdżka do Meteorów, czyli 13 klasztorów znajdujących się nad Równiną Tesalską.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przemysł produkcji stali jest odpowiedzialny za około 10% antropogenicznej emisji węgla do atmosfery. Gdyby przemysł ten stanowił oddzielne państwo byłby 3. – po Chinach i USA – największym emitentem CO2. Przedstawiciele firmy Electra z Boulder twierdzą, że opracowali praktycznie bezemisyjny proces elektrochemicznej produkcji stali, a pozyskany w ten sposób materiał nie będzie droższy od wytworzonego metodami tradycyjnymi.
      Aż 90% CO2 emitowanego w procesie produkcji stali powstaje podczas wytopu żelaza z rudy. Dlatego też, jeśli chcemy mówić o dekarbonizacji procesu produkcji stali, mówimy o dekarbonizacji wytopu, stwierdza prezes i współzałożyciel Elektry, Sandeep Nijhawan.
      Electra opracowała „elektrochemiczny proces hydrometalurgiczny”, dzięki któremu zawarty w rudzie tlenek żelaza jest redukowany do żelaza w temperaturze 60 stopni Celsjusza. Nie trzeba przy tym spalać węgla. Najpierw ruda jest rozpuszczana w specjalnym roztworze kwasów. To znany proces hydrometalurgiczny, który stosowany jest np. podczas produkcji miedzi czy cynku. Jednak dotychczas nie udawało się go stosować w odniesieniu do żelaza. Nijhawan wraz z zespołem opracowali unikatowy proces, który to umożliwia. Dzięki niemu oddzielają zanieczyszczenia od rudy, a następnie pozyskują samo żelazo przepuszczając przez roztwór prąd elektryczny. Cały proces może być napędzany energią słoneczną i wiatrową. Ma on jeszcze jedną olbrzymią zaletę, do produkcji można używać tanich rud o niskiej zawartości żelaza. Możemy korzystać z rud, które obecnie są traktowane jak odpady. W kopalniach jest olbrzymia ilość takich rud, których nikt nie wydobywa, stwierdza Nijhawan.
      Electra podpisała już umowę z firmą Nucor Corporation, największym producentem stali w USA. Firma zebrała też 85 milionów dolarów od inwestorów za które rozwija swoją technologię i buduje eksperymentalną fabrykę w Boulder w USA. Ma ona ruszyć jeszcze w bieżącym roku, a przed końcem dekady ma rozpocząć się komercyjna produkcja stali z wykorzystaniem nowej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przestawienie światowego systemu energetycznego na źródła odnawialne będzie wiązało się z większą emisją węgla do atmosfery, gdyż wytworzenie ogniw fotowoltaicznych, turbin wiatrowych i innych urządzeń wymaga nakładów energetycznych. Jednak im szybciej będzie przebiegał ten proces, tym większe będą spadki emisji, ponieważ więcej energii ze źródeł odnawialnych w systemie oznacza, że źródła te będą w coraz większym stopniu napędzały zmianę. Takie wnioski płyną z badań, których autorzy oszacowali koszt zmiany systemu produkcji energii, liczony nie w dolarach, a w emisji gazów cieplarnianych.
      Wniosek z naszych badań jest taki, że do przebudowania światowej gospodarki potrzebujemy energii i musimy to uwzględnić w szacunkach. W jaki sposób by ten proces nie przebiegał, nie są to wartości pomijalne. Jednak im więcej zainwestujemy w początkowej fazie w zieloną energię, w tym większym stopniu ona sama będzie napędzała zmiany, mówi główny autor badań, doktorant Corey Lesk z Columbia University.
      Naukowcy obliczyli jaka będzie emisja gazów cieplarnianych związana z wydobyciem surowców, wytworzeniem, transportem, budowaniem i innymi czynnościami związanymi z tworzeniem farm słonecznych i wiatrowych oraz ze źródłami geotermalnymi i innymi. Do obliczeń przyjęto scenariusz zakładający, że świat całkowicie przechodzi na bezemisyjną produkcję energii.
      Jedne z wcześniejszych badań pokazują, że przestawienie całej światowej gospodarki (nie tylko systemu energetycznego) na bezemisyjną do roku 2050, kosztowałoby 3,5 biliona dolarów rocznie. Z innych badań wynika, że same tylko Stany Zjednoczone musiałyby w tym czasie zainwestować nawet 14 bilionów dolarów.
      Teraz możemy zapoznać się z badaniami pokazującymi, jak duża emisja CO2 wiązałaby się ze zbudowaniem bezemisyjnego systemu produkcji energii.
      Jeśli proces zmian będzie przebiegał w tym tempie, co obecnie – a zatem gdy pozwolimy na szacowany wzrost średniej globalnej temperatury o 2,7 stopnia Celsjusza do końca wieku – to do roku 2100 procesy związane z budową bezemisyjnego systemu produkcji energii będą wiązały się z emisją 185 miliardów ton CO2 do atmosfery. To dodatkowo tyle, ile obecnie ludzkość emituje w ciągu 5-6 lat. Będzie więc wiązało się to ze znacznym wzrostem emisji. Jeśli jednak tworzylibyśmy tę samą infrastrukturę na tyle szybko, by ograniczyć wzrost średniej temperatury do 2 stopni Celsjusza – a przypomnijmy, że taki cel założono w międzynarodowych porozumieniach – to zmiana struktury gospodarki wiązałaby się z emisją dodatkowych 95 miliardów ton CO2 do roku 2100. Moglibyśmy jednak założyć jeszcze bardziej ambitny cel i ograniczyć wzrost globalnej temperatury do 1,5 stopnia Celsjusza. W takim wypadku wiązałoby się to z wyemitowaniem 20 miliardów ton CO2, a to zaledwie połowa rocznej emisji.
      Autorzy badań zastrzegają, że ich szacunki są prawdopodobnie zbyt niskie. Nie brali bowiem pod uwagę emisji związanych z koniecznością budowy nowych linii przesyłowych, systemów przechowywania energii czy zastąpienia samochodów napędzanych paliwami kopalnymi przez pojazdy elektryczne. Skupili się poza tym tylko na dwutlenku węgla, nie biorąc pod uwagę innych gazów cieplarnianych, jak metan czy tlenek azotu. Zauważają też, że zmiana gospodarki wiąże się nie tylko z problemem emisji, ale też z innymi negatywnymi konsekwencjami, jak konieczność sięgnięcia po rzadziej dotychczas używane minerały, których złoża mogą znajdować się w przyrodniczo cennych czy dziewiczych obszarach, zauważają też, że budowa wielkich farm fotowoltaicznych i wiatrowych wymaga zajęcia dużych obszarów, co będzie wpływało na mieszkających tam ludzi oraz ekosystemy.
      Pokazaliśmy pewne minimum. Koszt maksymalny jest zapewne znacznie większy, mówi Lesk. Dodaje, że badania przyniosły zachęcające wyniki. Pokazują bowiem, że im szybciej i więcej zainwestujemy na początku, tym mniejsze będą koszty. Jeśli jednak wielkie inwestycje nie rozpoczną się w ciągu najbliższych 5–10 lat, stracimy okazję do znacznego obniżenia kosztów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...