Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak brzmi pajęcza sieć? Naukowcy z MIT przełożyli drgania sieci na dźwięki słyszalne dla ludzi

Recommended Posts

Tkające sieci pająki posiadają bardzo wyczulone nogi, dzięki którym odbierają drgania sieci, w której szamoce się ofiara. Teraz naukowcy przełożyli te drgania na dźwięki, które możemy usłyszeć i wyobrazić sobie to, co czuje pająk.

Pajęcza sieć może być postrzegana jak przedłużenie ciała pająka, który na niej żyje. Jest tez czujnikiem, mówi Markus Buehler z Massachusetts Institute of Technology (MIT), który prezentował swoje badania podczas wirtualnego spotkania Amerykańskiego Towarzystwa Chemicznego. Gdy wykorzystamy rzeczywistość wirtualną i zanurzymy się w pajęczej sieci możemy usłyszeć i zrozumieć to, co dotychczas mogliśmy tylko obserwować.

Poszczególne nici w pajęczej sieci mają różną długość i są poddane różnym naprężeniom. Dlatego też emitują różne dźwięki. Zespół Buehlera wykorzystał laser do stworzenia trójwymiarowej mapy ruchu sieci pająka z gatunku Cyrtophora citricola. Zbadali częstotliwość drgań i elastyczność każdej z nici i przypisali im odpowiednie dźwięki w zakresie słyszalnym dla człowieka. Dzięki temu możemy usłyszeć, jak brzmi pajęcza sieć.

Oczywiście naukowcy musieli dokonać pewnych założeń. Na przykład dźwięki wydawane są przez syntezator imitujący harfę. Nici położone bliżej słuchacza są głośniejsze, niż to położone dalej. Sami zresztą posłuchajcie.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Brzmi trochę niepokojąco, jak muzyka z jakiegoś filmu. Tylko czy pająk faktycznie słyszy dźwięki, czy tylko odczuwa drgania zmysłem dotyku?

Share this post


Link to post
Share on other sites
Posted (edited)

Z takich dźwięków pewnie często można by odtworzyć kształt, jak w słynnym pytaniu https://pl.wikipedia.org/wiki/Czy_da_się_usłyszeć_kształt_bębna%3F

Choć pewnie jest wiele kontrprzykładów, jak "homofoniczne" bębny o tym samym zbiorze częstotliwości własnych (aczkolwiek są różnice: https://www.comsol.com/blogs/can-we-hear-the-shape-of-a-drum/ ):

modes-of-polygons-with-shared-set-of-eig

normal-mode-shapes-computed-numerically.

Edited by Jarek Duda

Share this post


Link to post
Share on other sites

Wszystkie dźwięki prędzej czy późnej są przeniesione na drgania mechaniczne narządów. W uchu drga błona bębenkowa, a kwestią mózgu jest, jak to zinterpretuje. Niektórzy ludzie cierpią na szumy w uszach i jest wiele przyczyn tego schorzenia wliczając w to stany zapalne, które podrażniają nerwy albo wysokie ciśnienie, które słychać poprzez tkanki. Ludzkie oko rejestruje obraz do góry nogami ze ślepą plamką, który jest korygowany przez mózg.

Pająki nie mają uszu, ale wyczuwają drgania sieci, powierzchni i powietrza włoskami i odnóżami. Inna ciekawostka to, że większość pająków ma cztery pary oczu i widzą one na inny sposób i w innym zakresie. Zamiast jednej pary złożonych gałek ocznych mają kilka, które mają różne zastosowanie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Pod wodą nie słychać ludzkiego krzyku. Ale odgłosy wydawane przez foki szare – już owszem. Jakie zjawiska akustyczne decydują o tym, że foki wydobywać mogą dźwięki i na wodzie, i pod jej powierzchnią? Sprawdził to w swoich badaniach dr Łukasz Nowak. Ciało foki działa jak głośnik – streszcza naukowiec.
      Z fokami szarymi jest trochę jak ze starym małżeństwem. One rozmawiają ze sobą bardzo rzadko. A konkretne – kiedy przychodzi okres godowy. U fok taki okres występuje tylko na początku roku, tuż po tym, kiedy urodzą się młode foki i samice są gotowe, by ponownie zajść w ciążę. Wtedy komunikacja między samcami, samicami i młodymi jest bardzo ożywiona – opowiada dr Nowak. W swoich badaniach naukowiec skupiał się jednak nie na tym, co te odgłosy oznaczają, ale jak one powstają. Wszystkie swoje nagrania udostępnił w otwartych zbiorach danych.
      A to, jak foki wydają dźwięki jest o tyle ciekawe dla akustyków, że zwierzęta żyją trochę w wodzie, a trochę na lądzie. I w przeciwieństwie do człowieka potrafią nie tylko wydawać odgłosy, które świetnie rozchodzą się w powietrzu, ale i odgłosy, które słychać pod wodą – mimo skrajnie dużych różnic między tymi środowiskami. Kolejną interesującą sprawą jest to, że foki szare rozmiarami są porównywalne z człowiekiem, a częstotliwości wydawanych przez nie odgłosów są dobrze odbierane przez ludzkie ucho.
      To, jak wydają dźwięki foki, może to stanowić dla nas inspirację, jak budować systemy do podwodnej komunikacji – komentuje akustyk dr Łukasz Nowak z University of Twente (Holandia).
      Badacz przestudiował odgłosy wydawane przez foki szare w fokarium w stacji morskiej UG na Helu. Wydzielił trzy różniące się akustyką grupy dźwięków i przedstawił hipotezy, jak dźwięki te mogą być generowane. Jego badania ukazały się w czasopiśmie Bioacustics.
      W bazie udostępnionej przez naukowca można obejrzeć filmiki z nagraniami foczych rozmów, a także posłuchać nagrań audio - zarówno odgłosów podwodnych, jak i wydawanych na powierzchni.
      Foki musiały się dostosować do komunikacji akustycznej, do porozumiewania się i nad, i pod wodą – zwraca uwagę naukowiec. Tłumaczy, że powietrze i woda stanowią zaś dwa bardzo różne ośrodki pod względem właściwości akustycznych. My, ludzie, zazwyczaj, jeśli chcemy coś powiedzieć, wprawiamy w drgania kolumnę powietrza wydychaną z płuc. Z kolei jamę nosowo-gardłową wykorzystujemy jako filtr, który możemy przestrajać. Nasze układy głosowe stworzone są tak, by emitować dźwięk głównie przez usta - tam skąd uchodzi z nas powietrze. W emisji dźwięku zaś nie mają znaczenia same drgania np. klatki piersiowej – opowiada dr Nowak.
      W przypadku wody taka metoda tworzenia dźwięków nie będzie efektywna, bo dźwięk z powietrza generalnie do wody nie przechodzi. W wodzie przenoszą się lepiej dźwięki strukturalne - powstające w drgających ciałach stałych (to np. stuknięcie ręką w drzwi) niż aerodynamiczne – te wywołane wibracją powietrza (np. ludzki głos). Dlatego człowiek mówiący pod wodą praktycznie nie będzie w wodzie słyszalny – zwraca uwagę akustyk.
      Dlatego foki, aby przekazywać sobie sygnały dźwiękowe pod wodą, muszą zmienić drgania powietrza na drgania swojego ciała. Tkanki mają właściwości mechaniczne całkiem podobne do właściwości wody. I z nich całkiem dobrze drgania - a więc i dźwięki - do wody się przenoszą. Ciało foki działa więc jak wielki głośnik podwodny – wyjaśnia rozmówca PAP.
      Dodaje, że czasem części podwodnych odgłosów fok towarzyszy wydobywanie się bąbelków (a to znaczy, że odgłos powstaje przy wydechu). A części – nie. Naukowiec po strukturze tych ostatnich dźwięków domyśla się, że zwierzęta muszą wtedy przepompowywać powietrze to w jedną, to w drugą stronę. Dźwięk ten jednak wprawia w wibracje ciało foki, a ciało przekazuje te drgania do wody.
      Inaczej jest jednak, kiedy foka przebywa na powierzchni – wtedy duża część dźwięku wypromieniowana jest przez nozdrza.
      Foki szare żyją między wodą a lądem. Komunikują się w zakresie częstotliwości akustycznych, które słyszymy gołym uchem. Właściwości ich układów głosowych – w odróżnieniu np. od delfinów, które posługują się ultradźwiękami – są zbliżone do ludzkich. Dlatego foki były dla mnie inspiracją przy opracowywaniu systemów komunikacji głosowej dla nurków – mówi dr Nowak.
      Jego zespół już kilka lat temu opracował taki system komunikacji podwodnej. Obserwując, jak foki wydają dźwięk pomyślałem o układach technicznych, które tłumaczyłyby drgania powietrza na drgania struktur wokół i potem przenoszą dźwięk do wody. Wraz z zespołem zbudowaliśmy działające prototypy urządzeń do komunikacji między nurkami – wspomina. Nurkowie mówili do opracowanego przez Polaków urządzenia, a dźwięk wydobywający się z tego wynalazku rozchodził się w wodzie. Każdy pod wodą mógł go więc usłyszeć bez użycia żadnego dodatkowego sprzętu.
      Urządzenie działało, można było dzięki niemu rozmawiać pod wodą. Podjęliśmy się komercjalizacji, ale rozbiliśmy się o etap wdrożeniowy. Projekt umarł – opowiada akustyk.
      Dodaje, że choć wtedy zgromadził ogromne ilości danych dotyczących odgłosów fok i miał przypuszczenia, jak one ze sobą się komunikują, to dopiero teraz, w czasie pandemii, miał czas, aby opracować dane i przekuć w publikacje naukową. Dopiero teraz jednak prezentujemy uporządkowaną klasyfikację odgłosów fok i przedstawiamy hipotezy dotyczące generacji tych dźwięków – tłumaczy.
      Dr Nowak opowiada, że do badania odgłosów fok szarych zachęcił go prof. Krzysztof Skóra, który był wtedy szefem Stacji Morskiej UG. Badania przerwała jednak śmierć profesora. Dziś stacja Morska nosi imię tego biologa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stetoskop na miarę XXI wieku, który bezprzewodowo prześle dźwięk, dostosuje charakterystykę dźwięku do potrzeb lekarza, usprawni proces diagnostyki nawet w trudnych warunkach pandemii. Taki wynalazek opracowali studenci Politechniki Wrocławskiej i Uniwersytetu Medycznego.
      Ich projekt otrzymał nagrodę specjalną w konkursie Forum Młodych Mistrzów podczas XXVI Forum Teleinformatyki. Zespół tworzą: Karol Chwastyniak, Wojciech Kania, Wojciech Korczyński z Wydziału Informatyki i Zarządzania oraz Filip Ciąder z Wydziału Mechanicznego, a także studenci Wydziału Lekarskiego Uniwersytetu Medycznego we Wrocławiu: Tomasz Skrzypczak i Jakub Michałowicz.
      Czuły, dokładny, inteligentny
      Zespół zaprojektował inteligentny stetoskop, który ma wspomagać lekarza w jego codziennej pracy. Kluczowym atrybutem rozwiązania jest cyfrowe przetwarzanie dźwięku. Dzięki redukcji niechcianego szumu otoczenia osłuchiwanie pacjenta staje się bardziej precyzyjne. Regulacja głośności umożliwia dostosowanie dźwięku do potrzeb lekarza. Zwiększa to komfort badania oraz pozwala na wzmocnienie najbardziej stłumionych szmerów – tłumaczą pomysłodawcy.
      Dzięki współpracującej ze stetoskopem aplikacji mobilnej można bezprzewodowo przesłać dźwięk wprost do słuchawek użytkownika. To jest szczególnie przydatne w czasie pandemii COVID-19, gdy lekarz musi osłuchać pacjenta w pełnym kombinezonie ochronnym z zachowaniem zasad bezpieczeństwa.
      Zastosowana przez studentów technologia pozwala na wyposażenie urządzenia w takie funkcje, jak możliwość konsultacji z innymi specjalistami, zapisywanie w pliku, eksportowanie, porównywanie z nagraniami wzorcowymi i przywoływanie nagranych dźwięków z historii pacjenta. Co więcej, zespół rozpoczął także wdrażanie do projektu metod sztucznej inteligencji. Pierwsze próby dały bardzo obiecujące wyniki.
      Dzięki wykorzystaniu uczenia maszynowego można dostrzec i sklasyfikować subtelne różnice szmerów wad zastawkowych serca – wyjaśniają studenci.
      Projekt z potencjałem  
      Od strony merytorycznej wsparcia udzielił studentom m.in. dr inż. Zbigniew Szpunar z Wydziału Informatyki i Zarządzania. To są kreatywni młodzi ludzie, którzy myślą nieszablonowo i bardzo konkretnie. W trudnym czasie izolacji, pracując zdalnie, realizują projekt, który zahacza o zagadnienia z kilku dziedzin: mechatroniki, medycyny i zaawansowanej informatyki. Musieli opanować wiele tematów z zakresu uczenia maszynowego, inżynierii oprogramowania, elektroniki, ale też kardiologii czy telemedycyny – mówi opiekun studentów z PWr. Tak naprawdę to moją istotną rolą jest nie przeszkadzać im w realizacji tego, co sobie zaplanowali – dodaje dr Szpunar.
      Potencjał studenckiego projektu dostrzegły już dwa wrocławskie szpitale, które wspomagają zespół we wszystkich etapach pracy. W ich działania zaangażowali się: prof. Marta Negrusz-Kawecka, dr n. med. Anna Goździk i dr n. med. Marta Obremska z Centrum Chorób Serca Uniwersyteckiego Szpitala Klinicznego, a także dr hab. Joanna Jaroch, lek. Alicja Sołtowska i lek. Jakub Mercik z Oddziału Kardiologii Szpitala Specjalistycznego im. T. Marciniaka. W projekcie współpracują również studenci Uniwersytetu Medycznego we Wrocławiu: Klaudia Błachnio, Julia Szymonik, Michał Kosior oraz Sebastian Tokarski – student Wydziału Elektroniki Politechniki Wrocławskiej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Alopecosa fabrilis, pająk z rodziny pogońcowatych, o którym sądzono że wyginął w Wielkiej Brytanii został odkryty... na terenie bazy wojskowej. Okazało się, że zwierzę, którego długość ciała dochodzi do 5 centymetrów świetnie sobie radzi w bazie w Surrey. Ostatni raz Alopecosa fabrilis był widzainy na Wyspach Brytyjskich w 1993 roku.
      Pogońcowate to pająki, które aktywnie polują, a nie budują sieci. Alopecosa fabrilis to zwierzę nocne, więc i trudne w obserwacji. Ponownego odkrycia dokonał – po dwuletnich poszukiwaniach – Mike Waite, manedżer programu badania pająków w Surrey Wildlife Trust.
      Waite najpierw przyjrzał się... zdjęciom satelitarnym bazy wojskowej. Zidentyfikował tam obszary, na których pająk lubi polować. Po uzyskaniu zgody, spędził wiele na piaszczystych fragmentach terenu bazy. W końcu się udało. Znalazł liczne samce, jedną samicę i prawdopodobnie kilka młodych, jednak te ostatnie trudno jednoznacznie zidentyfikować.
      Alopecosa fabrilis potrafi wytwarzać nić pajęczą, jednak używa jej do wyścielania gniazd w ziemi, w których hibernuje na zimę.Gatunek jest krytycznie zagrożony. Występuje też na kontynencie, szczególnie na przybrzeżnych wydmach Danii i Holandii. Dlatego też Waite zastanawia się, czy nie przetrwał na wybrzeżach Wielkiej Brytanii.
      Surrey Wildlife Trust zarządza słabo rozwiniętymi obszarami Surrey, by chronić występującą tam dziką przyrodę. Bazy wojskowe są często schronieniami dla zwierząt, gdyż zwykle mają one tam spokój, w bazach infrastruktura jest słabo rozwinięta.
      Ze względów bezpieczeństwa Waite nie zdradza dokładnie, gdzie znalazł Alopecosa fabrilis. Mówi jedynie, że występuje tam wiele rodzimych gatunków ptaków, jaszczurek czy motyli.
      Wiele osób nie zdaje sobie sprawy, że dzięki rozmiarom i zróżnicowaniu baz wojskowych obszary te charakteryzuje niezwykle duża bioróżnorodność. Nie jest tam prowadzona działalność rolnicza, nie buduje się tam osiedli mieszkalnych. Obecnie bazy takie stały się ważnymi sanktuariami dla najrzadszych i najbardziej zagrożonych gatunków zwierząt, mówi Rich Lowley z Defense Infrastructure Organization.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przełom na gruncie inżynierii i fizyki ogłosili naukowcy z CUNY ASRC i Georgia Tech. Jako pierwsi w historii zaprezentowali bowiem porządek topologiczny bazujący na modulacjach czasu. Osiągnięcie to pozwala na propagację fal dźwiękowych wzdłuż granic metamateriałów topologicznych bez ryzyka, że fale wrócą czy też zaczną propagować się poprzecznie z powodu niedoskonałości materiału.
      Topologia zajmuje się badaniem właściwości, które nie ulegają zmainie nawet po zdeformowaniu obiektów. W izolatorze topologicznym prąd płynie wzdłuż granic obiektu, a na przepływ ten nie mają wpływu niedoskonałości struktury obiektu. W ostatnich latach dzięki postępom na polu metamateriałów udało się w podobny sposób kontrolować rozprzestrzenianie się światła i dźwięku.
      Andrea Alu z CUNY ASRC i profesor Alexander Khanikaev z City College of New York wykorzystali asymetrie geometryczne do stworzenia porządku topologicznego w metamateriałach akustycznych. Fale dźwiękowe rozprzestrzeniały się wzdłuż ich krawędzi i brzegów. Jednak poważnym problemem był tutaj fakt, że mogły one rozprzestrzeniać się zarówno w przód jak i w tył. To zaś bardzo zaburzało odporność materiału na zakłócenia i ograniczało topologiczny porządek propagacji dźwięku. Zaburzenia w strukturze materiału mogły bowiem prowadzić do odbicia dźwięku.
      Najnowsze badania pozwoliły na przezwyciężenie tych problemów. Ich autorzy wykazali, że do uzyskania porządku topologicznego można wykorzystać złamanie parzystości operacji odwrócenia czasu (parzystość T), a nie tylko asymetrii geometrycznych. Dzięki takiemu podejściu dźwięk rozprzestrzenia się tylko w jednym kierunku i jest bardzo odporny na wszelkie niedoskonałości materiału.
      To przełom na polu fizyki topologicznej. Uzyskaliśmy porządek topologiczny dzięki zmianom w czasie, co jest procesem zupełnie innym i dającym więcej korzyści niż cała topologiczna akustyka opierająca sie na asymetriach geometrycznych, mówi Andrea Alu. Dotychczasowe metody wymagały istnienia kanału, który był wykorzystywany do odbijania dźwięku, co znacząco ograniczało ich właściwości topologiczne. Dzięki modulacjom czasowym możemy uniemożliwić powrót dźwięku i uzyskać silną ochronę topologiczną.
      Przełomy dokonano dzięki stworzeniu urządzenia składającego się z zestawu okrągłych piezoelektrycznych rezonatorów ułożonych w strukturę powtarzających się heksagonów. Całość przypominała plaster miodu. Całość podłączono do zewnętrznego obwodu, który dostarczał sygnał modulujący odpowiedzialny za złamanie parzystości T.
      Co więcej, całość jest programowalna, co oznacza, że fale można wysłać wieloma różnymi drogami. Jak mówi Alu, wynalazek ten posłuży do udoskonalenia sonarów, układów elektronicznych wykorzystujących dźwięk czy urządzeń do obrazowania za pomocą ultradźwięków.
      Ze szczegółami badań można zapoznać się na łamach Science Advances.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Doktor inżynier Jacek Wilk-Jakubowski z Politechniki Świętokrzyskiej jest autorem innowacyjnej gaśnicy, która gasi pożar... falami dźwiękowymi. Jego urządzenie nie tylko tłumi ogień, ale ma i tę kolosalną zaletę, że nie niszczy otoczenia w takim stopniu jak gaśnice wodne czy pianowe. Ponadto jest tańsze w eksploatacji.
      Dźwiękowa gaśnica działa z odległości nienal 2 metrów i może być obsługiwana zdalnie. Człowiek nie musi więc znajdować się blisko ognia. Działanie gaśnicy polega na wykorzystaniu fali akustycznej, które zwiększa ruch powietrza na krawędzi płomieni. Tym samym zmniejsza się obszar, na którym następuje proces spalania, cząsteczki tlenu pod wpływem fali dźwiękowej zagęszczają się i rozrzedzają. W wyniku tego falującego ruchu odchylone płomienie rozrywają się na części i przestają na siebie oddziaływać, gdyż tlenu jest coraz mniej w miejscu, w którym zachodzi proces spalania. W efekcie, po zaledwie kilkunastu sekundach od uruchomienia urządzenia ogień udaje się ugasić, czytamy na stronach Politechniki Świętokrzyskiej.
      Ponadto w przeciwieństwie do tradycyjnych gaśnic, ta akustyczna może działać przez długi czas, gdyż nie występuje tutaj problem wyczerpania się środka gaśniczego, nie musi być cykliczne sprawdzania pod kątem występowania odpowiedniego ciśnienia. Mankamentem jest zaś konieczność zapewnienia źródła zasilania.
      Z eksperymentów przeprowadzonych przez doktora Wilka-Jakubowskiego wynika, że do gaszenia ognia najlepiej nadają się niskie dźwięki, znajdujące się na granicy słyszalności ludzkiego ucha. Wynalazca, we współpracy z Pawłem Stawczykiem i naukowcami z Uniwersytetu Technicznego w Bułgarii przeprowadził już pierwsze próby polowe prototypu. Gaśnica skutecznie tłumiła palące się ciecze i gazy.
      Naukowcy przeprowadzili już wstępne rozmowy z ekspertami ds. pożarnictwa. Wynika z nich, że nowatorska gaśnica najlepiej sprawdziłaby się jako wbudowany element systemu przeciwpożarowego budynku. Mogłaby w tej roli zastąpić tradycyjne spryskiwacze.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...