Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Składnik domowych środków czystości pomoże... udoskonalić fuzję jądrową

Recommended Posts

Naukowcy potwierdzili, że bor, składnik domowych środków czystości, pomaga w zwiększeniu wydajności reaktorów fuzyjnych. Specjaliści z Princeton Plasma Physics Laboratory (PPPL) przeprowadzili eksperymenty, w czasie których wykazali, że pokrycie wewnętrznych elementów tokamaka borem poprawia wydajność reakcji.

Nasze eksperymenty dokładniej pokazują, jak to działa. Pozwolą nam one ocenić, czy kontrolowane wstrzykiwanie proszku z boru może być wykorzystane w przyszłości do pomocy w pracy reaktorów fuzyjnych, mówi fizyk Alessandro Bortolon, główny autor artykułu w Nuclear Fusion.

Fuzja jądrowa wykorzystuje procesy podobne do tych, jakie zachodzą w Słońcu. Lżejsze pierwiastki łączą się w cięższe. W ten sposób powstaje niemal niewyczerpane źródło czystej i bezpiecznej energii. Naukowcy od dziesięcioleci próbują opanować fuzję.
Najnowsze eksperymenty wykazały, że wstrzykiwanie boru pozwala na łatwiejsze uzyskanie w plazmy o odpowiednich parametrach w tokamakach, których wewnętrzne elementy pokryte są lekkimi pierwiastkami, jak węgiel.

Autorzy obecnych badań bazowali na eksperymentach prowadzonych wcześniej w Axially Symmetric Divertor Experiment-Upgrade (ASDEX-U) należącym do Instytutu Fizyki Plazmy im. Maxa Plancka w Niemczech. Wówczas wykazano, że dzięki wstrzykiwaniu boru możliwe jest uzyskanie wysokiej jakości plazmy w tokamaku pokrytym wolframem. Eksperymenty dla tokamaka pokrytego węglem są ważne z dwóch powodów. Po pierwsze, wiele tokamaków korzysta z tego pierwiastka. Po drugie – pokazuje to, że wstrzykiwanie boru może być przydatne w różnego rodzaju tokamakach.

Najnowsze eksperymenty uzupełniły też lukę w wiedzy dotyczącej sposobu osadzania się boru. Intuicja podpowiada, że gdy sproszkowany bor opada na plazmę, rozpuszcza się w niej i gdzieś osadza. Dotychczas jednak nikt nie próbował nawet potwierdzić istnienia w plazmie warstwy boru. Nie było na ten temat żadnych informacji. Przeprowadzone przez nas badania są pierwszymi, podczas których bezpośrednio wykazano i zmierzono to zjawisko, dodaje Bortolon.

Okazuje się, że warstwa boru zapobiega zanieczyszczeniu plazmy przez materiał z samego tokamaka. Materiał taki może rozrzedzić plazmę i ją zdestabilizować. Im zaś plazma bardziej czyta, tym bardziej stabilna i tokamak może dłużej działać.
Technika wstrzykiwania boru może uzupełniać lub nawet zastąpić wykorzystywaną obecnie technikę dostarczania boru do tokamaka. W chwili obecnej uzupełnienie tokamaka o bor wymaga wyłączenia go nawet na kilka dni, a wykorzystuje się w niej toksyczne gazy.

Wstrzykiwanie boru eliminuje te problemy. Jeśli wykorzystujesz technikę wstrzykiwania sproszkowanego boru, nie musisz wszystkiego przerywać i wyłączać tokamaka. Nie musisz też przejmować się pracą z toksycznym gazem. Nowa technika będzie niezwykle przydatna podczas przyszłej codziennej pracy tokamaków, dodaje Bortolon.


« powrót do artykułu

Share this post


Link to post
Share on other sites

W temacie jest nadmierne uproszczenie. Czysty bor NIE jest składnikiem chemii gospodarczej. Środki czystości zawierają związki boru, głównie borany, w szczególności tetraboran sodu (boraks) i nadboran sodu.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
      Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańscy eksperci z National Ignition Facility poinformowali o uzyskaniu z fuzji jądrowej wyraźnie więcej energii niż wprowadzono w paliwo. Uzyskano tym samym punkt tzw. breakeven. Po kilkudziesięciu latach badań pojawiła się realna nadzieja na uzyskanie niemal niewyczerpanego źródła czystej energii.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
      Fuzja jądrowa jest od wielu dekad przedmiotem zainteresowania naukowców na całym świecie. Problem w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji.
      Istnieją różne pomysły na przeprowadzeni fuzji jądrowej, a najpopularniejszym z nich jest próba wykorzystania tokamaków. Optymalna temperatura, w której dochodzi do reakcji połączenia się deuteru z trytem w tokamaku wynosi od ok. 100 do ok. 200 milionów stopni Celsjusza. Tak rozgrzana materia znajduje się w stanie plazmy. Trzeba ją uwięzić w jakiejś niematerialnej pułapce. Może być nią np. silne pole magnetyczne. I to właśnie rozwiązanie stosowane jest w tokamakach i będzie je wykorzystywał słynny budowany we Francji reaktor badawczy ITER. Uwięzienie jest konieczne zarówno dlatego, by plazma się nie rozpraszała i nie chłodziła, jak i dlatego, by utrzymać ją z dala od ścian reaktora, które zostałyby uszkodzone przez wysokie temperatury.
      Innym pomysłem jest zaś inercyjne uwięzienie plazmy. Z tej technologii korzysta właśnie National Ignition Facility (NIF). NIF otwarto w 2009 roku w w Kalifornii. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej paliwo. Jest ono zgniatane prze światło lasera, a zapłon następuje w wyniku transformacji promieniowania laserowego w promieniowanie rentgenowskie. To efekt prac prowadzonych od dziesięcioleci. W latach 60. zespół fizyków z Lawrence Livermore National Laboratory – do którego należy NIF – pracujący pod kierunkiem Johna Nuckollsa, wysunął hipotezę, że zapłon fuzji jądrowej można by uzyskać za pomocą laserów. Właśnie poinformowano, że 5 grudnia bieżącego roku uzyskano długo oczekiwany zapłon.
      Zapłon ma miejsce, gdy ciepło z cząstek alfa powstających w wyniku fuzji termojądrowej w centrum kapsułki z paliwem jest w stanie przezwyciężyć efekt chłodzący wywołany m.in. stratami promieniowania rentgenowskiego czy przewodnictwem elektronowym, zapewniając samopodtrzymujący mechanizm ogrzewania i gwałtowny wzrost ilości uzyskanej energii, czytamy na stronach NIF. Podczas eksperymentu do paliwa dostarczono 2,05 megadżula (MJ) energii, a w wyniku reakcji uzyskano 3,15 MJ.
      Zapłon uzyskano w niewielkim cylindrze zwanym hohlraum, wewnątrz którego znajdowała się kapsułka z paliwem. Wewnątrz niej energia światła laserowego zmieniła się w promieniowanie rentgenowskie, doszło do kompresji kapsułki, jej implozji i pojawienia się wysokotemperaturowej plazmy, wewnątrz której panowało wysokie ciśnienie.
      To ważny krok, jednak zanim do naszych domów popłynie czysta energia uzyskana drogą fuzji jądrowej, musimy nauczyć się uzyskiwać wielokrotnie więcej energii niż kosztowało nas doprowadzenie do reakcji. Do tego zaś potrzeba wielu naukowych i technologicznych przełomów. Ich osiągnięcie może potrwać całe dekady.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W National Ignition Facility dokonano przełomowego kroku na drodze ku uzyskiwaniu energii z fuzji jądrowej. Po raz pierwszy w historii w tego typu systemie udało się uzyskać porównywalną ilość energii jak ta, która została zaabsorbowana przez paliwo podczas inicjowania reakcji. Jednak do uzyskania większej ilości energii niż włożono do całego systemu jeszcze daleka droga. Ostatni eksperyment wykazał też, że naukowcom z Lawrence Livermore National Laboratory udało się zwiększyć wydajność systemu o cały rząd wielkości.
      Przełom dokonał się, gdy cząsteczki alfa, jądra helu powstałe w wyniku fuzji deuteru i trytu, oddały swoją energię do paliwa, zamiast, jak zwykle, wydostać się z niego. Ta dodatkowa energia przyspieszyła fuzję, prowadząc do jeszcze większej produkcji cząsteczek alfa. Taki samonapędzający się mechanizm to początek fuzji jądrowej.
      Najnowszy eksperyment został bardzo szczegółowo zaprojektowany tak, by nie doszło do pęknięcia plastikowych osłon, w których znajduje się paliwo. Prawdopodobnie to właśnie degradacja osłoń spowodowała, że poprzednie eksperymenty były nieudane. Osiągnięcie celu było możliwe dzięki zmodyfikowaniu impulsu laserowego, za pomocą którego paliwo jest kompresowane.
      W National Ignition Facility używa się 192 laserów, które kompresują miniaturowe pigułki z paliwem deuterowo-trytowym do tego stopnia, iż w wyniku fuzji jądrowej dochodzi do uwolnienia dodatkowej energii. Kapsułki mają średnice mniejszą niż połowa średnicy ludzkiego włosa. Wewnątrz znajdują się tryt i deuter, które przez mniej niż miliardową część sekundy zostają poddane olbrzymiemu ciśnieniu i temperaturze.
      Obecnie naukowcy starają się wykorzystać dwie różne koncepcje rozpoczęcia fuzji jądrowej. Jedna, z której korzysta National Ignition Facility, zakłada użycie laserów do skompresowania paliwa i utrzymania go na miejscu za pomocą inercyjnego uwięzienia. Z kolei w Europie próbuje się innego podejścia. W Joint European Torus w Wielkiej Brytanii oraz w reaktorze ITER we Francji próbuje się utrzymać plazmę na miejscu za pomocą uwięzienia magnetycznego.
      Celem wszystkich tych prac jest rozpoczęcie fuzji jądrowej i uzyskanie z niej energii.
      Po dziesiątkach latach badań i niezwykle powolnego rozwoju techniki fuzji jądrowej w końcu udało się uzyskać nadmiarową energię. Przełom dokonany w otwartym w 2009 NIF powinien bardziej przychylnie nastawić doń krytyków tego eksperymentu. Warto przypomnieć, że NIF bił rekordy impulsu i uzyskanej mocy laserowej. Duże koszty związane z utrzymaniem NIF skłoniły jednak Kongres USA do podjęcia decyzji, iż ośrodek ma w większym niż wcześniej stopniu zajmować się badaniami nad bronią jądrową. To jednak, jak widzimy, nie przeszkodziło w osiągnięciu sukcesu na pierwotnym polu zainteresowań NIF.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa amerykańskich, brytyjskich i japońskich badaczy pracujących w National Ignition Facility (NIF) odkryła, że pokrycie cewką magnetyczną cylindra zawierającego paliwo wodorowe podnosi temperaturę paliwa i trzykrotnie zwiększa wydajność reakcji. To kolejny krok ku kontrolowanej praktycznej reakcji termonuklearnej.
      National Ignition Facility otwarto w 2009 roku. To laboratorium badawcze, w którym zespół 192 laserów skupia wiązki na niewielkiej kapsułce zawierającej wodór, wykorzystując technikę inercyjnego uwięzienia plazmy. To alternatywny wobec znanych tokamaków, sposób na fuzję jądrową. Już w 2014 roku z systemu uzyskano więcej energii niż weń włożono. Natomiast w sierpniu ubiegłego roku udało się osiągnąć uzysk energii rzędu 1,3 MJ i poinformowano, że naukowcy z NIF są bliżej zainicjowania stabilnej samopodtrzymującej się reakcji termojądrowej niż ktokolwiek inny. Od tamtej pory eksperci z NIF próbują powtórzyć swoje osiągnięcie, ale wciąż im się to nie udało. Niedawno na przykład odkryli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń.
      Grupa fizyków z NIF, poszukując przyczyny niepowodzeń, przeanalizowała starsze prace naukowe i zauważyła w nich coś intrygującego. Autorzy niektórych z nich twierdzili, że przeprowadzone symulacje komputerowe wykazały, iż zamknięcie cylindra z paliwem w polu magnetycznym powinno znacznie zwiększyć produkcję energii. Postanowiono więc sprawdzić, czy tak jest w rzeczywistości.
      Jednak do przeprowadzenia eksperymentów konieczna była modyfikacja samego cylindra. Jest on zbudowany ze złota. Umieszczenie go w silnym polu magnetycznym spowodowałoby pojawienie się silnego prądu elektrycznego, który rozerwałby cylinder. Dlatego też uczeni zbudowali nowy cylinder, ze stopu złota i tantalu. Zmienili też paliwo w kapsułce z wodoru na jeden z jego izotopów, deuter. Następnie całość zapakowali w cewkę i wystrzelili wiązki laserowe. Zastosowanie zewnętrznego osiowego pola magnetycznego o natężeniu 26 tesli [...] zwiększyło temperaturę jonów o 40%, a uzysk neutronów o 3,2 razy, czytamy w Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z National Ignition Facility (NIF) w Lawrence Livermore National Laboratory zauważyli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń. Prowadzone w NIF badania dadzą lepszy wgląd w działanie reaktorów fuzyjnych, w których reakcja inicjowana jest za pomocą potężnych impulsów laserowych.
      Specjaliści z całego świata próbują odtworzyć reakcje fuzji jądrowej zachodzące na Słońcu. Ich opanowanie dałoby ludzkości niemal nieograniczone źródło czystej energii. W NIF wykorzystuje się zespół 192 laserów, za pomocą których kompresuje się kapsułki z trytem i deuterem, zapoczątkowując fuzję jądrową. To koncepcja znana jako ICF (Inertial Confinement Fusion – inercyjne uwięzienie plazmy) Przed kilkoma dniami na łamach Nature Physics opublikowano artykuł, z którego dowiadujemy się, że zmierzona energia neutronów – przynajmniej podczas najbardziej intensywnej fazy fuzji – jest wyższa niż spodziewana.
      To oznacza, że jony biorące udział w fuzji mają większą energię. To coś czego się nie spodziewaliśmy i nie byliśmy w stanie przewidzieć na podstawie standardowych równań opisujących ICF, mówi fizyk Alastair Moore, główny autor artykułu.
      Eksperci nie są pewni, co spowodowało obserwowane zjawisko, podkreślają jednak, że to jeden z najbardziej bezpośrednich pomiarów jonów biorących udział w fuzji. Pomiary oznaczają, że teoretycy będą musieli zmodyfikować teorie i wzory, którymi posługują się specjaliści z NIF. Jest tutaj też powód do optymizmu. Dzięki lepszym teoriom wyjaśniającym obserwowane zjawiska, być może uda się opracować metodę zainicjowania długotrwałej samopodtrzymującej się reakcji.
      Zaobserwowanie niespodziewanego zachowania jonów było możliwe dzięki opracowaniu nowej technologii detektorów, nazwanej Cherenkov nToF. Dzięki niej niepewność odnośnie prędkości neutronów wynosi zaledwie 5 km/s czyli 1/10 000. Średnia energia neutronów uzyskiwana podczas reakcji w NIF oznacza, że poruszają się one z prędkością ponad 51 000 km/s.
      Jednym z możliwych wyjaśnień zaobserwowanego zjawiska jest stwierdzenie, że jony deuteru i trytu nie są w równowadze. Potrzebujemy bardziej zaawansowanych symulacji, by to zrozumieć. Współpracujemy na tym polu z Los Alamos National Laboratory, Imperial College London i MIT, dodaje Moore.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...