Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Największy na świecie procesor jest szybszy niż procesy fizyczne. Zrewolucjonizuje sztuczną inteligencję?

Rekomendowane odpowiedzi

Cerebras Systems, twórca niezwykłego olbrzymiego procesora dla sztucznej inteligencji, poinformował, że jest on szybszy niż procesy fizyczne, które symuluje. W symulacji, składającej się z 500 milionów zmiennych CS-1 zmierzył się z superkomputerem Joule, 69. najpotężniejszą maszyną na świecie. I wykonał swoje zadanie 200-krotnie szybciej niż ona.

O powstaniu niezwykłego procesora oraz wyzwaniach inżynieryjnych z nim związanych informowaliśmy na początku bieżącego roku. Wówczas jego twórcy obiecywali, że do końca roku przekonamy się o jego wydajności. I słowa dotrzymali.

CS-1 symulował proces spalania w elektrowniach węglowych. I przeprowadził symulację tego procesu szybciej, niż zachodzi sam proces. Firma Cerebras i jej partnerzy z US National Energy Technology Center (NETL) mówią, że CS-1 jest znacznie szybszy od jakiegokolwiek superkomputera bazującego na tradycyjnych układach CPU czy GPU.

Jak wyjaśnia dyrektor Cerebras, Andrew Feldman, prognozowanie pogody, projektowanie skrzydeł samolotu, przewidywanie rozkładu temperatur w reaktorze jądrowym i wiele innych złożonych problemów jest rozwiązywanych poprzez badanie ruchu cieczy w przestrzeni i czasie. W czasie takiej symulacji dzieli się przestrzeń na sześciany, modeluje ruch cieczy w każdym z sześcianów i określa interakcje pomiędzy sześcianami. W symulacji może być milion lub więcej sześcianów i 500 000 zmiennych.
Przeprowadzenie odpowiednich obliczeń wymaga olbrzymiej mocy, wielu rdzeni, olbrzymiej ilości pamięci umieszczonej jak najbliżej rdzeni obliczeniowych, wydajnych połączeń pomiędzy rdzeniami oraz pomiędzy rdzeniami a układami pamięci. Wymaga też długotrwałego trenowania odpowiednich modeli sieci neuronowych.

Układ CS-1 na pojedynczym kawałku krzemu mieści 400 000 rdzeni, 18 gigabajtów pamięci oraz łącza umożliwiające przesyłanie pomiędzy rdzeniami danych z prędkością 100 Pb/s, a przesył pomiędzy rdzeniami a układami pamięci odbywa się z prędkością 9 PB/s.

Specjaliści z NETL postanowili porównać możliwości superkomputera Joule z możliwościami CS-1. Joule korzysta z 84 000 rdzeni CPU i do pracy potrzebuje 450 KW. Cerebras używa zaledwie 20 KW. Joule przeprowadził odpowiednie obliczenia w ciągu 2,1 milisekundy. CS-1 zajęły one 6 mikrosekund, był więc ponad 200-krotnie szybszy.

Jak mówi Feldman, olbrzymia wydajność CS-1 niesie ze sobą dwa wnioski. Po pierwsze obecnie nie istnieje żaden superkomputer zdolny do pokonania CS-1 w rozwiązywaniu tego typu problemów. Wynika to z faktu, że takie symulacje nie skalują się dobrze. Dokładanie kolejnych rdzeni do współczesnych superkomputerów nie tylko nie pomoże, ale może nawet spowalniać tak wyspecjalizowane obliczenia. Dowiodło tego chociażby porównanie CS-1 i Joule'a. Superkomputer pracował najbardziej wydajnie, gdy używał 16 384 z 84 000 dostępnych rdzeni. Problemy takie wynikają z połączeń pomiędzy rdzeniami i pomiędzy rdzeniami a układami pamięci.

Jeśli chcemy na przykład symulować układ składający się z zestawu 370x370x370 sześcianów to CS-1 mapuje warstwy na sąsiadujące ze sobą rdzenie. Komunikacja między rdzeniami odbywa się błyskawicznie, więc szybko wymieniają one dane dotyczące sąsiadujących sześcianów, a obliczenia dla każdej z warstw są przechowywane w znajdujących się na tym samym krzemie układach pamięci, więc rdzenie również mają do niej bezpośredni dostęp.

Dodatkowo, jako że CS-1 jest w stanie przeprowadzić symulacje procesów fizycznych szybciej niż te procesy się odbywają, może zostać też wykorzystany do kontrolowania pracy złożonych systemów obliczeniowych.

Feldman poinformował, że wśród klientów korzystających z SC-1 są m.in. GlaxoSmithKline, Argonne National Laboratory, Lawrence Livermore National Laboratory, Pittsburgh Supercomputing Centre oraz niewymienione z nazwy firmy i instytucje z branż wojskowej, wywiadowczej oraz przemysłu ciężkiego.

Co więcej Cerebras ma już gotowego następcę CS-1. Został on wykonany w technologii 7nm (CS-1 zbudowano w technologi 16nm), korzysta z 40 GB pamięci (CS-1 z 20 GB) i 850 000 rdzeni (CS-1 ma 400 000 rdzeni).


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  Cytat

szybszy niż procesy fizyczne, które symuluje

To teraz wyobraźmy sobie, że symuluje Twój mózg. Kim jesteś?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No to pięknie.

Ciekawe jak to będzie wyglądać za jakiś czas, może nie ma sensu już kodować i robić inne, powtarzalne rzeczy i czas się przebranżowić na Picassa? ( z moim talentem wchodzi jeszcze w grę ekspresjonizm :P )

EDIT: a nie, czekaj, malarstwo też odpada. Szydełkowanie może na razie, szaliczki na drutach?

Edytowane przez radar

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie jestem pewien tego"powera" tego przerośniętego procka. Sami autorzy delikatnie sugerują że ma przewagę nad maluchami tylko w specyficznych zastosowaniach, przy algorytmach które słabo się skalują , które wymieniają dużo danych między wątkami. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Eksperci z CSIRO (Commonwealth Scientific and Industrial Research Organisation) agendy naukowej rządu Australii, stworzyli algorytm sztucznej inteligencji, który lepiej niż ludzcy specjaliści rozpoznaje płeć na podstawie wyglądu czaszki. Przyda się ono wszędzie tam, gdzie potrzebna jest dokładna szybka identyfikacja płci, na przykład podczas śledztw kryminalnych czy prac prowadzonych w związku z katastrofami naturalnymi.
      Nowe narzędzie, stworzone przy pomocy naukowców z University of Western Australia, potrafi określić płeć na podstawie samej tylko czaszki z 97-procentową dokładnością. To znacznie lepszy wynik, niż 82-procentowa dokładność uzyskiwana przez ekspertów medycyny sądowej posługujących się tradycyjnymi metodami.
      Algorytm sztucznej inteligencji sprawdzono na próbce 200 skanów z tomografu komputerowego, a uzyskane wyniki porównano z wynikami ludzi. "Nasze narzędzie określa płeć około 5-krotnie szybciej niż ludzie. To oznacza, że rodziny czekające na informacje o bliskich szybciej mogą otrzymać informacje. Narzędzie to może być dużą pomocą podczas badań antropologicznych, bardziej precyzyjnie określając płeć i pozwalając uniknąć błędów robionych przez ludzi", mówi doktor Hollie Min, jedna z autorek algorytmu.
      Twórcy nowego narzędzia mają zamiar nadal je trenować, uwzględniając różne ludzkie populacje, co powinno nie tylko poprawić efektywność algorytmu, ale i spowodować, że będzie bardziej uniwersalny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W niedawno opublikowanym wywiadzie Mark Zuckerberg stwierdził, że prawdopodobnie jeszcze w bieżącym roku firma Meta (właściciel Facebooka), podobnie jak inne wielkie firmy, będzie dysponowała systemem sztuczne inteligencji zdolnym do programowania na poziomie średnio doświadczonego inżyniera (mid-level engineer).
      Początkowo wdrożenie takich systemów będzie bardzo kosztowne i będą one musiały zyskać na wydajności, jednak z czasem dojdziemy to momentu, w którym bardzo duża część kodu używanych przez nas aplikacji, w tym kodu algorytmów sztucznej inteligencji, nie będzie pisana przez ludzi, a przez sztuczną inteligencję, stwierdził założyciel Facebooka.
      Słowa Zuckerberga to tylko jeden z sygnałów, że branżę programistyczną mogą w najbliższym czasie czekać olbrzymie zmiany. Sami programiści z jednej strony tworzą algorytmy sztucznej inteligencji, które w przyszłości mogą ich zastąpić, z drugiej zaś, coraz częściej korzystają z ich pomocy. Jeszcze na początku 2023 roku tylko 10% programistów używało AI do pomocy w programowaniu, pod koniec roku 2023 już 63% firm używało lub wdrażało użycie narzędzi AI pomagających w programowaniu. Pod koniec ubiegłego roku odsetek ten wzrósł do 80%.
      Zuckerberg nie jest jedynym wśród wiodących biznesmenów z branży IT, który zapowiada szybkie nadejście olbrzymich zmian. We wrześniu Matt Garman, szef Amazon Web Services, zasugerował, że w ciągu najbliższych 2 lat większość inżynierów oprogramowania przestanie zajmować się programowaniem. Zaś kilka miesięcy wcześniej prezes Nvidii stwierdził, że uczenie się programowania nie jest dobrym pomysłem, gdyż dzięki rozwojowi AI ludzki język staje się najważniejszym językiem programowania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pomiędzy lipcem 2021 roku a lutym 2023 roku 12 centrów mammograficznych w Niemczech brało udział w programie, w którym badania mammograficzne były wspomagane przez system sztucznej inteligencji. Radiolodzy sami decydowali, kiedy wykorzystać AI, a kiedy wykonać badania tradycyjnymi metodami. W tym czasie we wspomnianych centrach 119 radiologów przebadało 463 094 kobiety w wieku 50–69 lat. W przypadku 260 739 z nich diagnoza była wspomagana przez sztuczną inteligencję, pozostała część stanowiła grupę kontrolną.
      W grupie, w której badania wspomagane były przez AI, odsetek wykrytych nowotworów piersi wyniósł 0,67%, podczas gdy w grupie badanej tradycyjnymi metodami było to 0,57%. Ponadto tam, gdzie do badania użyto AI odsetek pań poddanych pogłębionej diagnostyce wyniósł 3,74%, a w grupie kontrolnej – 3,83%. Wartość predykcyjna dodatnia (PPV) dla grupy badanej przez AI wynosiła 17,9%, dla grupy kontrolnej – 14,9%. PPV pokazuje tę część podejrzanych wyników mammografii, które w pogłębionej diagnostyce rzeczywiście reprezentują chorobę.
      Najważniejszym wskaźnikiem przydatności algorytmu sztucznej inteligencji w badaniach mammograficznych jest fakt, że zwiększył on wykrywalność choroby bez zwiększania potrzeby przeprowadzenia pogłębionej diagnostyki. To już kolejne badania, które pokazały, że algorytmy sztucznej inteligencji rzeczywiście wspomagają pracę radiologów i mogą ratować życie kobiet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W latach 1967–1978 roku Włoska Wyprawa Archeologiczna ISMEO prowadziła pierwsze badania w Shahr-i Sokhta (SiS) w Iranie. Szybko okazało się, że miasto składało się z trzech obszarów: mieszkalnego, cmentarza i przemysłowego. Jego największy rozkwit przypadł na połowę III tysiąclecia przed naszą erą, gdy obszar mieszkalny zajmował 80 hektarów. Miasto uznano za jeden z najważniejszych ośrodków na wschodzie Wyżyny Irańskiej. Zidentyfikowano tam cztery okresy kulturowe podzielone na 10 faz konstrukcyjnych, które datowano na od 2. połowy IV tysiąclecia do połowy III tysiąclecia. W południowej części miasta znaleziono duży cmentarz o powierzchni około 20 hektarów, a w jednym z grobów planszę do gry i bierki.
      Datowanie wykazało, że gra pochodzi z lat 2600–2700 p.n.e. W grobie nie znaleziono żadnej innej planszy, założono więc, że wszystkie bierki pochodzą z tej jednej gry i że jest ona kompletna. Planszę do gry złożono w pobliżu głowy zmarłej osoby, w pobliżu zaś stał koszyk z bierkami i kostkami. Plansza jest podobna do wcześniej znajdowanych plansz, ale istnieją między nimi też duże różnice. Kształt planszy z SiS jest niezwykle podobny do słynnej Królewskiej Gry z Ur, jednak gra z SiS ma więcej bierek i nie ma na niej rozety, która wydaje się bardzo ważnym elementem tego typu gier, znanych pod zbiorową nazwą „gier na 20 kwadratach”.
      Z Bliskiego Wschodu i spoza niego znamy ponad 100 plansz, w pewnej mierze do siebie podobnych, a w wielu aspektach różnych, które klasyfikowane są pod tą nazwą. Znaleziono je w Turkmenistanie czy Indiach. Podobnej gry używali Egipcjanie ok. 1580 roku p.n.e. Prawdopodobnie zapoznali się z nią za pośrednictwem Hyksosów. Podobne gry były popularne przez około 2000 lat.
      Autorzy nowych badań zaprzęgli algorytmy sztucznej inteligencji, do pracy nad odgadnięciem zasad gry. Wykorzystanie metod obliczeniowych do badań starożytnych gier, pozwala na symulowanie tysięcy możliwych zestawów zasad i wybranie tych najbardziej prawdopodobnych czy pasujących do gry i bierek.
      Gra z Shahr-i Sokhta wydaje się grą strategiczną – rodzajem wyścigu – podobną do Królewskiej Gry z Ur, ale bardziej złożoną. Zdaniem naukowców, mamy tutaj do czynienia z grą 2-osobową, a celem gracza jest przesunięcie przez pola planszy wszystkich 10 swoich bierek, zanim zrobi to przeciwnik. W grze gracze posługują się kostką i mogą wykorzystywać swoje bierki zarówno do jak najszybszego dotarcia do celu, jak i do blokowania ruchów przeciwnika. Badacze sugerują, że dodatkowe bierki, dzięki którym gra różni się np. od gry z Ur, dodawały jej złożoności. Widzimy wśród nich na przykład rozety, podobne do rozet, które w grze w Ur narysowane są na planszy. W przeciwieństwie do Królewskiej Gry z Ur, w przypadku gry z SiS losowość odgrywa mniejszą rolę, a większa rolę gra strategia.
      Po określeniu najbardziej prawdopodobnych zasad, grę z SIS przetestowało 50 doświadczonych graczy, który ocenili ją i porównali z Królewską Grą z Ur. Przyznali, że gra z SiS jest bardziej wymagająca pod względem strategii niż gra z Ur.
      Szczegóły badań zostały opublikowane na łamach Journal of the British Institute of Persian Studies. Gra z Shahr-i Sokhta została znaleziona w bogato wyposażonym grobie, ale nie był to grób królewski, co wskazuje, że była bardziej dostępna niż gra dla najwyższej elity.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
      Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
      Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
      Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...