
Polski uczony współtwórcą przenośnej konsoli do gier, która nie wymaga baterii
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na Uniwersytecie w Linköping powstał akumulator, któremu można nadać dowolny kształt. Dzięki płynnym elektrodom można go będzie w dowolny sposób integrować z urządzeniami przyszłości. Tekstura materiału przypomina pastę do zębów. Można go będzie, na przykład, wykorzystać w drukarce 3D do wykonania akumulatora o dowolnym kształcie, mówi jeden z twórców nowatorskiego urządzenia, Aiman Rahmanudin.
Ludzkość używa coraz więcej gadżetów i urządzeń elektronicznych. Coraz więcej z nich to urządzenia noszone na ciele, jak pompy insulinowe, rozruszniki serca, implanty słuchu, w przyszłości coraz więcej elektroniki będzie zintegrowanej z ubraniami. Jeśli to wszystko ma działać i nie przeszkadzać użytkownikowi w codziennym funkcjonowaniu, potrzebne są nowe rodzaje baterii.
Baterie to największy składnik każdej elektroniki. Dzisiaj są to sztywne ciała stałe i dość nieporęczne. Jednak dzięki miękkim wygodnym bateriom możemy pozbyć niedogodności z nimi związanych. Można je będzie integrować w zupełnie inny sposób, niż obecnie, dodaje Rahmanudin.
Chcąc uniknąć błędów innych zespołów pracujących nad elastycznymi akumulatorami, naukowcy ze Szwecji wykorzystali polimery oraz ligninę. Ich urządzenie może być ładowane i rozładowywane ponad 500 razy i zachowuje swoją pojemność. Może być też rozciągnięte na 2-krotność swojej oryginalnej długości i wciąż dobrze działa.
Obecnie twórcy baterii pracują nad zwiększeniem napięcia. Nasza bateria nie jest doskonała. Sama koncepcja jest dobra, ale musimy poprawić wydajność. Obecnie możemy uzyskać 0,9 V. Szukamy innych związków chemicznych, by zwiększyć napięcie. Jedną z rozważanych przez nas opcji jest wykorzystanie cynku lub manganu, które powszechnie występują w skorupie ziemskiej, dodaje Rahmanudin.
Ze szczegółami nowej baterii można zapoznać się na łamach Science Advances.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Akumulatory w samochodach elektrycznych mogą działać o 1/3 dłużej, niż twierdzą ich producenci, informują naukowcy ze SLAC-Stanford Battery Center. Eksperci centrum badawczego, które zostało założone przez SLAC National Accelerator Laboratory i Precourt Institute for Energy na Uniwersytecie Stanforda, doszli do wniosku, że obecne procedury testowe nie oddają prawidłowo warunków, w jakich używane są akumulatory. To zaś oznacza, że w rzeczywistości właściciele samochodów elektrycznych mogą używać ich przez wiele lat dłużej, niż przypuszczają.
Typowa procedura testowa, jakiej naukowcy i inżynierowie poddają rozwijane przez siebie akumulatory, polega na ich rozładowywaniu pod stałym obciążeniem i ładowaniu. Procedurę tę powtarza się wielokrotnie, by sprawdzić, w jakim tempie spada pojemność akumulatorów, a zatem jak długo będzie można ich używać.
Jednak, jak czytamy w artykule opublikowanym właśnie na łamach Nature Energy, metoda taka nie oddaje rzeczywistych warunków użytkowania tych akumulatorów. W rzeczywistości mogą one działać znacznie dłużej, a to bardzo dobra wiadomość dla obecnych i przyszłych posiadaczy samochodów elektrycznych. Mimo bowiem olbrzymiego, sięgającego 90%, spadku cen akumulatorów w ciągu ostatnich 15 lat, wciąż stanowią one około 1/3 ceny samochodu elektrycznego.
Ku naszemu zdziwieniu okazało się, że prawdziwe warunki użytkowania samochodu elektrycznego, częste przyspieszanie, hamowanie, które nieco ładuje baterie, zaparkowanie na chwilę przy mijanym sklepie spożywczym, pozostawianie bezczynnego samochodu na wiele godzin w czasie pracy czy snu, powoduje, że akumulatory mogą działać dłużej, niż pokazują to standardowe testy laboratoryjne, mówi profesor Simona Onori z Uniwersytetu Stanforda.
Autorzy badań wykorzystali cztery scenariusze testowania akumulatorów, od standardowych testów używanych obecnie w przemyśle, po testy, które – na podstawie danych zebranych ze standardowo używanych samochodów - oddawały prawdziwe warunki eksploatacji akumulatorów. Następnie wedle tych czterech scenariuszy przez dwa lata testowali 92 komercyjnie dostępne akumulatory litowo-jonowe. Okazało się, że im bardziej test był podobny do sposobu używania akumulatora w życiu codziennym, tym dłużej taki akumulator mógł pracować.
Uzyskane dane zostały następnie przeanalizowane za pomocą algorytmu maszynowego uczenia się. Naukowcy chcieli wiedzieć, jakie czynniki wpływają na żywotność baterii. Analizy wykazały na przykład, że krótkotrwałe, szybkie zwiększanie prędkości samochodu elektrycznego powoduje, że akumulatory ulegają wolniejszej degradacji. To niezwykle zaskakujące, gdyż dotychczas sądzono, że przyspieszanie negatywnie wpływa na żywotność akumulatorów. Tymczasem okazuje się, że pomaga ono zwiększyć ich żywotność.
Naukowcy sprawdzili różnice pomiędzy spadkiem pojemności akumulatorów powodowanym przez kolejne cykle ładowania-rozładowywania, a powodowanym samym upływem czasu. Tutaj wszystko zależy od sposobu używania akumulatorów. My, inżynierowie zajmujący się akumulatorami, zawsze uważaliśmy, że cykle ładowania-rozładowywania są znacznie ważniejsze niż upływ czasu. Jest to prawdziwe w odniesieniu do komercyjnie używanych pojazdów elektrycznych, jak autobusy czy ciężarówki, które albo jeżdżą, albo są ładowane. Natomiast w przypadku samochodów prywatnych, wykorzystywanych do pojechania do pracy, po dzieci, na zakupy, które przez większość dnia stoją bezczynnie i nawet nie są ładowane, upływ czasu jest ważniejszym czynnikiem wpływającym na degradację niż cykle ładowania-rozładowywania, stwierdza doktorant Alexis Geslin, jeden z głównych autorów badań. Dlatego też naukowcy postanowili określić optymalny sposób używania akumulatorów, by zrównoważyć wpływ obu czynników na te urządzenia. Okazało się, że przeciętny użytkownik prywatnego samochodu elektrycznego używa go w sposób optymalny dla akumulatorów. Jedyne, co należy zrobić – ale to już rola producentów samochodów – to dostosowanie oprogramowania zarządzającego akumulatorami do wniosków płynących z tych badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy i inżynierowie z University of Bristol oraz brytyjskiej Agencji Energii Atomowej (UKAEA) stworzyli pierwszą diamentową baterię z radioaktywnym węglem C-14. Urządzenia tego typu mogą działać przez tysiące lat, stając się niezwykle wytrzymałym źródłem zasilania, które może przydać się w wielu zastosowaniach. Bateria wykorzystuje radioaktywny C-14 do długotrwałego wytwarzania niewielkich ilości energii.
Tego typu źródła zasilania mogłyby trafić do biokompatybilnych urządzeń medycznych jak np. implanty słuchu czy rozruszniki serca, a olbrzymią zaletą ich stosowania byłoby wyeliminowanie konieczności wymiany baterii co jakiś czas. Sprawdziłyby się też w przestrzeni kosmicznej czy ekstremalnych środowiskach na Ziemi, gdzie wymiana baterii w urządzeniu byłaby trudna, niepraktyczne czy niemożliwa.
Opracowana przez nas technologia mikrozasilania może znaleźć miejsce w wielu różnych zastosowaniach, od technologii kosmicznych, poprzez bezpieczeństwo po medycynę, mówi profesor Tom Scott. Uczony przypomniał, że prace nad nowatorskim rozwiązaniem trwały przez pięć lat.
Diamentowa bateria generuje dostarcza energię przechwytując elektrony pochodzące z rozpadu radioaktywnego węgla-14. Jako że czas półrozpadu C-14 wynosi 5730 lat, urządzenie takie może działać bardzo długo.
Diamentowe baterie to bezpieczny i zrównoważony sposób na długotrwałe dostarczanie mocy rzędu mikrowatów. To nowa technologia, która pozwala na zamknięcie w sztucznych diamentach niewielkich ilości węgla-14, mówi Sarah Clark, dyrektor wydziału Cyklu Paliwowego Trytu w UKAEA.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nieprzewidywalność to jeden z problemów trapiących odnawialne źródła energii. Wiatraki i instalacje fotowoltaiczne czasami wytwarzają tak dużo energii, że są problemy z jej odbiorem, innym zaś razem, gdy energia by się przydała, one akurat nie pracują. Problem rozwiązałyby magazyny energii. Jak wynika z analiz magazyny takie musiałyby kosztować nie więcej niż 20 USD za kilowatogodzinę pojemności, by można było zasilać duże obszary wyłącznie energią słoneczną i wiatrową. Obecnie 100-megawatowy magazyn litowo-jonowy kosztuje 405 USD za kilowatogodzinę. Wkrótce ma się to zmienić.
Donald Sadoway to chemik materiałowy i emerytowany profesor MIT. Jest znanym ekspert w dziedzinie akumulatorów i ekstrakcji metali z rud, autorem wielu ważnych prac na tych polach. W 2010 roku stał się współzałożycielem firmy Ambri, która pracuje nad akumulatorem z ciekłego metalu. Firma informuje, że, w zależności od rodzaju instalacji, już obecnie jej akumulatory kosztują 180–250 USD za kilowatogodzinę pojemności. Do roku 2030 kwota ta ma spaść do 21 USD/kWh. Teraz przyszedł czas na zweryfikowanie tych zapewnień.
Ambri we współpracy z dostawcą energii Xcel Energy rozpocznie w 2024 roku budowę 300-kilowatowego systemu. Ma on zostać uruchomiony do końca przyszłego roku. Będzie to pierwsza instalacja Ambri na skalę przemysłową.
Profesor Sadoway wyjaśnia, że niższa cena akumulatorów z płynnym metalem wynika z wykorzystania prostszych materiałów, prostszej zasady działania oraz mniej skomplikowanego projektu. Ponadto takie akumulatory są znacznie bardziej trwałe od litowo-jonowych. Koncepcja akumulatora na ciekłych metalach czyni zeń świetne rozwiązanie dla zastosowań stacjonarnych. Akumulator jest niepalny i jest odporny na spadek wydajności. Mamy dane z tysięcy cykli ładowania/rozładowywania. Wynika z nich, że akumulatory te po 20 latach pracy powinny zachować 95% oryginalnej pojemności, stwierdza uczony.
Urządzenia firmy Ambri wykorzystują trzy ciekłe warstwy, oddzielone dzięki temu, że mają różną gęstość. Najgęstsza z nich to katoda z ciekłego antymonu. Znajduje się ona na samym dole. Na samej górze zaś jest anoda z mieszaniny wapnia. Warstwy te rozdzielone są elektrolitem z soli chlorku wapnia. Podczas rozładowywania anoda uwalnia jony wapnia, które przemieszczają się przez elektrolit do katody, tworząc tam mieszaninę wapniowo-antymonową. Podczas ładowania zachodzi proces odwrotny. Nie ma membrany, nie ma separatora. Wszystkie te elementy zapewniają prostotę budowy i odporność, cieszy się Sadoway.
Jeszcze 10 lat temu specjaliści z Ambri eksperymentowali z litem i magnezem w anodzie. Ze względu na koszty zdecydowali się na wapń. To jednak spowodowało, że prace nad akumulatorami znacznie się wydłużyły. Wszystkie te wspaniałe rzeczy, które dotychczas opracowaliśmy na potrzeby akumulatorów litowo-jonowych okazały się w tym przypadku nieprzydatne. Zachodzą tu inne procesy chemiczne, mamy tutaj inny projekt. Musieliśmy więc opracować wszystko od nowa, w tym urządzenia do produkcji naszych akumulatorów, wyjaśnia naukowiec.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Sprzątacz wyłączył zamrażarkę w uczelnianym laboratorium, ponieważ zepsuty sprzęt wydawał drażniący dźwięk. W ten sposób zniszczył próbki i inne materiały, niwecząc przeszło dwie dekady badań. Rensselaer Polytechnic Institute w Troy domaga się od firmy, która go zatrudniła, ponad 1 mln dolarów. Kwota ta ma stanowić odszkodowanie i pokryć opłaty prawne.
Uczelnia nie pozwała sprzątacza, ale zatrudniającą go firmę Daigle Cleaning Systems Inc., wskazując na niewłaściwe przeszkolenie i nadzorowanie personelu. Daigle Cleaning Systems Inc. świadczyła uczelni usługi przez kilka miesięcy 2020 roku (kontrakt opiewał na 1,4 mln dol.).
Michael Ginsberg, prawnik reprezentujący Rensselaer Polytechnic Institute, podkreślił w wypowiedzi dla CNN-u, że zaistniała sytuacja jest skutkiem ludzkiego błędu. Kluczem do jej interpretacji jest fakt, że firma nie przeszkoliła odpowiednio swojego personelu. Sprzątacz nie powinien bowiem próbować rozwiązywać problemów elektrycznych.
W zamrażarce znajdowały się m.in. hodowle komórkowe i próbki, w przypadku których, jak napisano w pozwie złożonym w Sądzie Najwyższym Hrabstwa Rensselaer, niewielkie wahania temperatury rzędu trzech stopni mogły wyrządzić katastrofalne szkody.
Materiał przechowywany w zamrażarce wymagał zachowania temperatury -80°C. Prof. K.V. Lakshmi, dyrektorka Baruch '60 Center For Biochemical Solar Energy Research, stwierdziła, że alarm włączył się ok. 14 września 2020 r., bo temperatura wzrosła do -78°C. Zespół naukowców ustalił, że mimo to próbkom i kulturom nic się nie stało. Ponieważ przez ograniczenia pandemiczne naprawa mogła się rozpocząć dopiero po tygodniu, na drzwiczkach zamrażarki umieszczono ostrzegający napis: Urządzenie piszczy, bo znajduje się w naprawie. Proszę go nie przesuwać ani nie odłączać. Nie ma potrzeby sprzątania tego obszaru. Jeśli chcesz wyłączyć dźwięk, przez 5-10 s przyciśnij guzik wyciszania alarmu. Zamiast tego 17 września sprzątacz wyłączył obwód zasilający zamrażarkę.
Nim naukowcy zorientowali się, co się stało, temperatura podniosła się aż o 50 stopni. Większość próbek uległa zniszczeniu. W raporcie sporządzonym przez uczelniany zespół ds. bezpieczeństwa publicznego napisano, że sprzątacz myślał, że włącza obwód zasilający, tymczasem w rzeczywistości było dokładnie na odwrót. Podczas rozmów z prawnikami nadal wydaje się przekonany, że nie zrobił nic złego i próbował po prostu pomóc.
Badania nad fotosyntezą prowadzone przez prof. K.V. Lakshmi mogły być przełomowe dla dalszego rozwoju paneli słonecznych.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.