Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Polski uczony współtwórcą przenośnej konsoli do gier, która nie wymaga baterii

Recommended Posts

Przenośna konsola, która umożliwia nieograniczenie długą rozgrywkę, bez potrzeby wymiany czy ładowania akumulatora, to marzenie wielu graczy. Urządzenie takie powstało właśnie dzięki współpracy naukowców z amerykańskiego Northwestern University i holenderskiego Uniwersytetu Technologicznego w Delft. Prototyp konsoli podobnej do Game Boya to model badawczy, który posłuży do dalszych prac nad elektroniczną rozrywką bez baterii czy akumulatorów.

Akumulatory i baterie są kosztowne i niezwykle szkodliwe dla środowiska naturalnego. Stąd też pomysł, by z nich zrezygnować. Twórcy wspomnianego prototypu postanowili wykorzystać energię słoneczną oraz energię dostarczaną przez samego użytkownika.

To pierwsze nieposiadające baterii urządzenie interaktywne, które czerpie energię z działań użytkownika. Gdy naciskasz przycisk, urządzenie zmienia twoje działanie w energię, którą się zasila, mówi współautor badań, Josiah Hester z Northwestern. Zrównoważona rozrywka elektroniczna będzie kiedyś oczywistością, a my – pozbywając się akumulatorów – uczyniliśmy ważny krok w tym kierunku, dodaje Przemysław Pawelczak z Delft.

Naukowcy zmodyfikowali Game Boyja dodając wokół ekranu panele fotowoltaiczne. Drugim źródłem energii jest sam użytkownik i naciskane przez niego przyciski. Zaprojektowane od podstaw urządzenie pozwala na uruchomienie dowolnej klasycznej gry zapisanej na kartridżach Game Boya.

W momencie gdy urządzenie przełącza się pomiędzy źródłami energii, doświadcza krótkotrwałej utraty zasilania. Naukowcy, by upewnić się, że czas gry pomiędzy takimi wyłączeniami będzie akceptowalnie długi, zaprojektowali swoją konsolę tak, by jak najbardziej oszczędzała ona energię. Stworzyli też nową technikę zapisywania stanu gry w pamięci nieulotnej, dzięki której zminimalizowali koszty układu pamięci oraz skrócili czas ponownego ładowania gry po odzyskaniu zasilania. Użytkownik nie musi naciskać przycisku „zachowaj”. Stan gry zapisywany jest dokładnie w momencie, w którym doszło do utraty zasilania.

Gdy dzień nie jest zbyt pochmurny, a gra wymaga co najmniej średniej liczby naciśnięć przycisków, utrata zasilania przydarza się rzadziej niż co 10 sekund i trwa około sekundy. Naukowcy stwierdzili, że jest to wystarczające rozwiązanie, by cieszyć się takimi grami jak szachy, pasjans czy Tetris. Z pewnością jednak będzie to przeszkadzało przy bardziej dynamicznych grach.

Oczywiście przed naukowcami jeszcze bardzo długa droga, zanim z tak prostego prototypu uczynią wygodną w użyciu pozbawioną akumulatorów i baterii przenośną konsolę pozwalającą na korzystanie z dowolnych gier. Uczeni mają jednak nadzieję, że ich prace zwiększą świadomość konsumentów w obliczu szybko rozwijającego się Internet of Things. Otaczamy się coraz większą liczbą niewielkich gadżetów, zużywając przy tym coraz więcej baterii i akumulatorów, które w końcu trafiają na wysypiska śmieci, zanieczyszczając glebę, wodę i powietrze.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Świetny pomysł. Czekamy teraz na użyteczną konstrukcję superkondensatorów. Biorąc pod uwagę wpływ gier nas sprawność fizyczną dołożyłbym ładowanie kinetyczne - godzina machania padem to godzina gry :D

Mam ikeowską latarkę na korbkę. Zapewne zawiera jakiś mały akumulatorek, bo po nakręceniu przez jakieś 30 sekund świeci zanim widać istotne zmniejszenie jasności, ale skończyło się poszukiwanie latarki z niewyładowaną baterią jak mi śliwka pod szafkę kuchenną wpadnie. Sto lat temu kolejarze mieli takie latarki do wyrabiania siły powitania ;)

 

Share this post


Link to post
Share on other sites
Godzinę temu, Jajcenty napisał:

 

Mam ikeowską latarkę na korbkę. Zapewne zawiera jakiś mały akumulatorek, bo po nakręceniu przez jakieś 30 sekund świeci zanim widać istotne zmniejszenie jasności, ale skończyło się poszukiwaniem latarki z niewyładowaną baterią jak mi śliwka pod szafkę kuchenną wpadnie. Sto lat temu kolejarze mieli takie latarki do wyrabiania siły powitania ;)

 

Mam taką samą z ikei i jest tam właśnie super kondensator.  Malutki 3.3V.  Więc całkiem nieźle

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Producenci akumulatorów od lat próbują zastąpić grafitową anodę w akumulatorach litowo-jonowych jej krzemową wersją. Powinno to zwiększyć zasięg samochodów elektrycznych wyposażonych w takie akumulatory. Próby są prowadzone zwykle z użyciem tlenku krzemu lub połączenia krzemu i węgla. Jednak kalifornijska firma Enevate ma nieco inny pomysł – wykorzystuje cienkie porowate warstwy czystego krzemu.
      Właściciel i główny technolog firmy, Benjamin Park, który od ponad 10 lat pracuje nad nowymi akumulatorami, twierdzi, że taki materiał jest nie tylko tani, ale pozwala na zwieszenie o 30% zasięgu samochodów elektrycznych wyposażonych w tego typu akumulatory. Co więcej, przedstawiciele Enevate uważają, że w niedalekiej przyszłości tego typu akumulatory po 5-minutowym ładowaniu zapewnią samochodowi 400 kilometrów zasięgu.
      Podczas ładowania akumulatorów litowo-jonowych jony litu przemieszczają się z katody do anody. Im więcej jonów jest w stanie przyjąć anoda, tym większa pojemność akumulatora. Krzem może przechowywać nawet 10-krotnie więcej energii niż grafit. Jednak w trakcie pracy akumulatora znacznie się on rozszerza i kurczy, powstają pęknięcia i materiał kruszy się po kilku cyklach ładowania.
      Producenci akumulatorów, chcąc obejść ten problem, dodają nieco krzemu do proszku grafitowego. Całość mieszana jest z tworzywem sztucznym działającym jak spoiwo i nakładana na cienką warstwę miedzi. W ten sposób powstaje anoda. Jednak, jak wyjaśnia Park, jony litu najpierw wchodzą w interakcje z krzemem, później z grafitem. Krzem wciąż się nieco rozszerza, a spoiwo jest dość słabe. Tak zbudowana anoda ulega tym szybszej degradacji, im więcej krzemu się w niej znajduje.
      Enevate nie używa spoiwa. Firma opracowała własny sposób na bezpośrednie nakładanie na miedź porowatych warstw krzemu o grubości od 10 do 60 mikrometrów. Na wierzch stosuje się dodatkową warstwę, która chroni krzem przed kontaktem z elektrolitem.
      Cały proces nie wymaga używania krzemu o wysokiej jakości, więc tego typu anoda kosztuje mniej niż anoda grafitowa o identycznej pojemności. Zaś dzięki temu, że stosowany jest krzem, jony litu mogą bardzo szybko się przemieszczać. W ciągu 5 minut można naładować akumulator do 75% pojemności, nie powodując przy tym zbytniego rozszerzania się krzemu.
      Wszystko co potrzebne do wyprodukowania anody można wytwarzać standardowymi metodami przemysłowymi z rolki. Zatem cały proces łatwo jest skalować. Dzięki połączeniu nowej anody z konwencjonalnymi katodami stworzono akumulatory o pojemności do 350 Wh/kg. To o około 30% więcej niż współczesne akumulatory litowo-jonowe.
      Enevate już współpracuje z koncernami motoryzacyjnymi. Jej nowe akumulatory powinny trafić do samochodów elektrycznych w sezonie 2024/2025.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego wraz ze współpracownikami z Polski i Chin, zademonstrowali mikrosilnik zasilany wprost wiązką światła. Polimerowy pierścień o średnicy 5 milimetrów, napędzany i sterowany przy pomocy wiązki lasera, potrafi obracać się i wykonywać pracę, np. obracając inny element osadzony na tej samej osi.
      Ruch obrotowy w przyrodzie jest bardzo rzadko spotykany, podczas gdy nasza cywilizacja jest nim napędzana. Potrafimy budować rozmaite silniki obrotowe, które składają się zwykle z wielu elementów, co utrudnia ich miniaturyzację. Istnieje jednak grupa materiałów umożliwiających konstrukcję małych, ruchomych urządzeń – ciekłokrystaliczne elastomery (ang. liquid crystal elastomer, LCE). Badania nad tymi materiałami skupiają się głównie na projektowaniu kształtu i sposobu odkształcenia elementów z LCE (np. skracanie, zginanie). Dlatego tak ważne było spojrzenie na LCE z innej strony, co doprowadziło do skonstruowania obrotowego mikrosilnika.
      Ciekłokrystaliczne elastomery to inteligentne materiały, które mogą szybko, w odwracalny sposób zmieniać kształt, na przykład po oświetleniu. Dzięki odpowiedniemu uporządkowaniu (orientacji) cząsteczek elastomeru można programować deformację elementu. Umożliwia to zdalne zasilanie i sterowanie mechanizmów wykonawczych i robotów przy pomocy światła.
      Wykorzystując technologię światłoczułych elastomerów badacze z Wydziału Fizyki Uniwersytetu Warszawskiego we współpracy z badaczami z Wydziału Matematyki Uniwersytetu w Suzhou w Chinach, Instytutu Fizyki Technicznej Wojskowej Akademii Technicznej w Warszawie oraz Centrum Materiałów Polimerowych i Węglowych Polskiej Akademii Nauk w Zabrzu zbudowali mikrosilnik, który obraca się dzięki wędrującej deformacji miękkiego materiału, wywołanej wiązką lasera. Oświetlana część silnika (rotor) ma kształt pierścienia o średnicy 5 milimetrów. Projektując odpowiednią orientację cząsteczek elastomeru można zapewnić stabilną pracę tego mikrosilnika albo zwiększyć jego prędkość obrotową.
      Mimo niewielkiej prędkości obrotowej, około jednego obrotu na minutę, nasz silnik pozwala spojrzeć z innej strony na mikromechanikę inteligentnych miękkich materiałów oraz ich potencjalne zastosowania – mówi dr inż. Klaudia Dradrach z Pracowni Nanostruktur Fotonicznych. Pomysł inspirowany jest silnikiem piezoelektrycznym, często spotykanym w obiektywach fotograficznych. Wsparcie naukowców z Polskiej Akademii Nauk z Zabrza i Wojskowej Akademii Technicznej było kluczowe – dzięki niemu opracowaliśmy powtarzalną metodę wytwarzania odkształcalnych miniaturowych elementów z LCE. W naszych badaniach brali udział młodzi naukowcy, m.in. Mikołaj Rogóż i Przemysław Grabowski, doktoranci z Wydziału Fizyki UW.
      Badacze, którzy wcześniej zademonstrowali napędzanego światłem robota-ślimaka poruszającego się tak jak jego krewni występujący w przyrodzie wierzą, że nowe inteligentne materiały w połączeniu z nowatorskimi metodami wytwarzania miniaturowych elementów, pozwolą im konstruować kolejne miniaturowe elementy i napędy. Obecnie pracują nad mikronarzędziami sterowanymi światłem i dalekozasięgowymi siłownikami liniowymi.
      Badania nad miękkimi mikrorobotami i polimerowymi mechanizmami wykonawczymi są finansowane są przez Narodowe Centrum Nauki w ramach projektu "Mechanizmy wykonawcze w mikro-skali na bazie foto-responsywnych polimerów", Ministerstwo Nauki i Szkolnictwa Wyższego w ramach "Diamentowego Grantu" przyznanego M. Rogóżowi, Ministerstwo Obrony Narodowej i program badawczy uniwersytetu w Suzhou.
      Wyniki badań ukazały się w piśmie ACS Applied Materials & Interfaces.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa elektroda, opracowana na MIT, pozwoli na zbudowanie akumulatorów, które przechowują więcej energii i pracują dłużej. Litowa anoda to efekt współpracy naukowców z MIT ze specjalistami z Hongkongu, Florydy i Teksasu.
      Jednym z największych problemów ze współczesnymi akumulatorami wynika z faktu, że w miarę ładowania akumulatora lit się rozszerza, a podczas rozładowywania kurczy się. Te ciągłe zmiany rozmiarów prowadzą do pękania lub odłączania się elektrolitu. Inny problem stanowi fakt, że żaden z używanych stałych elektrolitów nie jest tak naprawdę chemicznie stabilny w kontakcie z wysoko reaktywnym litem, ulega więc degradacji.
      Większość badań, mających na celu rozwiązanie tych problemów, poszukuje stabilnego elektrolitu. To jednak jest trudne.
      Naukowcy z MIT podeszli do problemu inaczej. Wykorzystali dwa dodatkowe materiały. Jeden nazwali „zmieszanymi przewodnikami jonowo-elektronicznymi” (MIEC), a drugi to „izolatory elektronu i jonu litowego” (ELI).
      Uczeni stworzyli trójwymiarową nanostrukturę przypominająca plaster miodu. Została ona zbudowana z heksagonalnych rurek MIEC częściowo wypełnionych litem. W każdej z rurek pozostawiono nieco wolnego miejsca. Gdy lit się rozszerza podczas ładowania, wypełnia puste miejsca w rurkach, poruszając się jak ciecz, mimo że zachowuje przy tym krystaliczną strukturę ciala stałego. Przepływ ten łagodzi naprężenia powstające podczas rozszerzania się litu, ale jednocześnie nie powoduje ani zmiany zewnętrznych rozmiarów elektrody, ani zmiany jej styku z elektrolitem. Drugi zaś ze wspomnianych materiałów, ELI, jest kluczowym mechanicznym łączem pomiędzy ściankami MIEC a stałym elektrolitem.
      Rozszerzający się i kurczący lit przemieszcza się tak, że nie wywiera nacisku na elektrolit, więc go nie niszczy. Twórcy anody porównują to do tłoków poruszających się w cylindrach. Jako, że całość jest jest zbudowana w skali nano, a każda z rurek ma średnicę 100-300 nanometrów, całość jest jak silnik z 10 miliardami tłoków, mówi główny autor badań, profesor Ju Li.
      Jako, że ścianki całej struktury wykonano z chemicznie stabilnego MIEC, lit nigdy nie traci kontaktu z materiałem. Cały akumulator pozostaje więc mechanicznie i chemiczne stabilny, dodaje Li. Naukowcy przetestowali swoją anodę podczas 100 cykli ładowania/rozładowywania i wykazali, że w elektrolicie nie powstały żadne pęknięcia.
      Naukowcy twierdzą, że ich projekt pozwoli na stworzenie akumulatorów litowych, w których anoda będzie 4-krotnie lżejsza na jednostkę pojemności niż obecnie. Jeśli dodamy do tego nowe pomysły na lżejszą katodę, całość może prowadzić do znaczącego obniżenia wagi akumulatora. Dzięki nowemu akumulatorowi nowoczesne smartfony można by ładować raz na 3 dni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeszcze w bieżącym miesiącu urzędnicy w Los Angeles mają zatwierdzić projekt, który dostarczy miastu energię taniej, niż jakiekolwiek paliwa kopalne. W jego ramach ma powstać potężna instalacja fotowoltaiczna wyposażona w jedne z największych akumulatorów. W roku 2023 farma ma dostarczać 7% energii zużywanej przez Los Angeles, a koszt jej wytworzenia ma wynieść 1,997 centa za kilowatogodzinę (to cena paneli) oraz 1,3 centa za kWh (cena akumulatorów). W sumie więc koszt produkcji kilowatogodziny to niecałe 3,3 centa.
      Ze względu na efekt skali, ceny urządzeń do energetyki odnawialnej i ceny akumulatorów ciągle spadają, mówi Mark Jacobson z Uniwersytetu Stanforda. W przeszłości przeprowadził on badania, w których stwierdził, że większość państw może przejść na energię odnawialną.
      Nowa instalacja słoneczna ma powstać w hrabstwie Kern w Kalifornii i zostanie wybudowana przez firmę 8minute Solar Energy. Jej moc wyniesie 400 MW, co zapewni energię dla 65 000 gospodarstw domowych. Z instalacją zostaną połączone akumulatory o pojemności 800 MWh, dzięki którym po zmierzchu zmniejszy się zużycie gazu.
      Szybki spadek cen energii odnawialnej oraz akumulatorów pomaga w coraz większym rozprzestrzenianiu się nowej technologii. W marcu Bloomberg New Energy Finance przeprowadził analizę ponad 7000 projektów, w których zakłada się przechowywanie energii i stwierdził, że od roku 2012 koszt przemysłowych akumulatorów litowo-jonowych zmniejszył się o 76%. W ciągu ostatnich 18 miesięcy spadł on o 35% do poziomu 187 USD za MWh. Z kolei firma analityczna Navigant przewiduje, że do roku 2030 koszty takich urządzeń spadną o kolejnych 50%, znacznie poniżej kwot obiecywanych przez 8minute.
      Inżynier Jane Long, ekspertka ds. polityki energetycznej z Lawrence Livermore National Laboratory mówi, że akumulatory litowo-jonowe to tylko część rozwiązania problemu. Zapewniają one bowiem energię jedynie przez kilka godzin. Potrzebujemy bardziej długoterminowego rozwiązania, stwierdza.
      Zainteresowanie energetyką odnawialną napędzają też władze lokalne, które coraz częściej mówią o całkowitym porzuceniu nieodnawialnych źródeł. Jak informuje Jacobson, już 54 hrabstwa i 8 stanów wyraziło chęć przejścia w 100% na energetykę odnawialną. W 2010 roku Kalifornia przyjęła przepisy, zgodnie z którymi do roku 2024 dostawcy energii muszą zainstalować systemy pozwalające na przechowanie 2% szczytowego zużycia energii przez stan.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Holenderski Inspektorat Środowiska Człowieka i Transportu ostrzega przed dronami chińskiej firmy DJI. Niektóre akumulatory wykorzystywane w modelach DJ Matrice 200 i DJ Inspire 2 mogą ulec nagłej awarii, co prowadzi do utraty zasilania i upadku drona. Szczególnie narażone na awarie są akumulatory TB50 i TB55. W związku z tym holenderski urząd apeluje do właścicieli urządzeń z tymi akumulatorami, by ich nie używali. Ostzreżenie wydano po tym, jak kilkanaście dronó spadło w Wielkiej Brytanii.
      Podobne zalecenia wydała wcześniej British Civil Aviation Authority. Czytamy w nich, że doszło do "niewielkiej liczby incydentów, podczas których dron w czasie lotu doświadczył całkowitej utraty zasilania, pomimo tego, iż w akumulatorach pozostała wystarczająca ilość energii".
      Dotychczas nie odnotowano żadnego przypadku zranień ludzi. Zniszczeniu uległy tylko drony. Stało się tak dzięki temu, że najwyraźniej ich piloci przestrzegali brytyjskich przepisów, które zabraniają przelotu nad ludźmi oraz w odległości mniejszej niż 50 metrów od ludzi, samochodów i łodzi oraz w odległości mniejszej niż 150 metrów od obszarów zaludnionych.
      Firma DJI oferuje wymianę wadliwych akumulatorów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...