Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Rekordowa jasność w akceleratorze cząstek. Naukowcy mają nadzieję na złapanie ciemnej materii

Recommended Posts

Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.

Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.

SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.

Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa.

Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.

Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1.

W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.

Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.

Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W czerwcu informowaliśmy, że najczulszy detektor ciemnej materii – XENON1T – zarejestrował niezwykłe sygnały. Jak wówczas pisaliśmy, możliwe są trzy interpretacje tego, co zauważono. Najmniej interesująca z nich to zanieczyszczenie urządzenia. Drugim możliwym wyjaśnieniem jest zarejestrowanie aksjonu, hipotetycznej cząstki tworzącej ciemną materię, a trzecim – równie interesująca możliwość wchodzenia neutrin w niezwykłe interakcje z wypełniającym detektor ksenonem.
      Na łamach Physical Review D i Physical Review Letters ukazało się właśnie 5 artykułów, których autorzy dokonują niezwykle interesujących interpretacji sygnałów.
      Fuminotu Takahashi, Masaki Yamada i Wen Yin uważają, że zarejestrowane sygnały świadczą o zauważeniu cząstek podobnych do aksjonów. Mają mieć one masę kilku keV/c2 i wchodzić w interakcje z elektronami. Ich zdaniem cząstki o takich właściwościach tłumaczą zarejestrowany sygnał, stanowią ciemną materię i wyjaśniają pewne anomalie obserwowane w białych karłach i czerwonych olbrzymach.
      Z kolei niemiecki zespół naukowy, Andreas Bally, Sudip Jana i Andreas Trautner, pisze, że sygnał może pochodzić od nieznanego bozonu cechowania, który pośredniczy w interakcjach pomiędzy pochodzącymi ze Słońca neutrinami a elektronami.
      Jeszcze inny pomysł ma Nicole F. Bell z University of Melbourne i jej koledzy z USA. Uważają oni, że źródłem sygnału jest cząstka ciemnej materii o relatywnie niskiej masie. Ich zdaniem cząstka taka można trafiać do detektora w "lekkim stanie" i rozpraszać się do "stanu ciężkiego", który rozpada się z towarzyszącą emisją fotonu. I to właśnie ten foton wchodzi w reakcje z elektronem, dając obserwowany sygnał.
      Bartosz Fornal z University of Utah oraz naukowcy z Pekinu i Hongkongu również uważają, że mamy do czyeniania z cząstką ciemnej materii. Ma ona pochodzić z centrum galaktyki. Sygnał zaś bierze się z jej interakcji z elektronami w XENON1T.
      Autorami ostatniego artykułu są Joseph Bramante i Ningqiang Song z Kanady. Naukowcy sądzą, że źródłem sygnału są rozpraszające się cząstki ciemnej materii będącej termicznym reliktem wczesnego wszechświata.
      Na ostateczne rozstrzygnięcie zagadki będziemy musieli jeszcze poczekać. Uda się to pod warunkiem, że podobny sygnał zostanie zarejestrowany w kolejnych eksperymentach związanych z poszukiwaniem ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wśród wielu niezwykłych idei Stephena Hawkinga jest i taka, zgodnie z którą ciemną materię stanowią czarne dziury, które powstały krótko po Wielkim Wybuchu. Pomysł taki jednak odrzucono, jednak nowe badania wskazują, że hipoteza taka może być prawdziwa.
      Pierwotne czarne dziury miałyby powstać nie w wyniku zapadania się gwiazd, a bezpośrednio z gęstej materii powstałej tuż po Wielkim Wybuchu. Tym samym ich masa mogłaby być znacznie mniejsza od masy Słońca.
      Obecnie znamy olbrzymie czarne dziury w centrach galaktyk oraz czarne dziury o masie gwiazdowej. Te drugie powstają w wyniku kolapsu grawitacyjnego gwiazd. Przed uruchomieniem wykrywacza fal grawitacyjnych LIGO znaliśmy czarne dziury o masie gwiazdowej nie przekraczającej około 20 mas Słońca. Jednak dzięki LIGO i europejskiemu VIRGO zaczęliśmy wykrywać bardziej masywne czarne dziury. Okazało się, że istnieją takie obiekty o masach od ponad 20 do nawet 85 mas Słońca. Udało się też zidentyfikować dziury o znacznie mniejszej masie. A najmniej masywna znana czarna dziura miała zaledwie 2,59 masy Słońca.
      Jeśli uda się wykryć czarne dziury o mniejszych niż masy gwiazd, z których obiekty takie mogą powstawać, może to oznaczać, że mamy do czynienia właśnie z pierwotnymi czarnymi dziurami. Zresztą już same prace tandemu LIGO/Virgo pokazały, że zakres mas czarnych dziur jest znacznie większy niż dotychczas przypuszczano, więc i samych czarnych dziur jest znacznie więcej, niż nam się wydaje.
      Jednak w 2017 roku Yacine Ali-Haïmoud, astrofizyk z New York University, opublikował pracę, w której wyliczał, że gdyby zaraz po Wielkim Wybuchu powstało tyle czarnych dziur, iż wyjaśniałyby one istnienie ciemnej materii, to z czasem dziury takie tworzyłyby pary, zaczynały wokół siebie krążyć, a w końcu łączyłyby się emitując fale grawitacyjne. Wydarzeń takich, wyliczał uczony, powinno być tak wiele, że LIGO/Virgo wykrywałyby tysiące razy więcej fal grawitacyjnych niż obecnie. Argumenty naukowca z Nowego Jorku były tak przekonujące, że wielu entuzjastów hipotezy pierwotnych czarnych dziur straciło dla niej serce.
      W ubiegłym tygodniu na łamach Cosmology and Astroparticle Physics Karsten Jedamzik z Uniwersytetu w Monpellier opublikował obliczenia, z których wynika, że w wielkiej populacji pierwotnych czarnych dziur zachodziłoby dokładnie tyle zderzeń ile obecnie obserwują wykrywacze fal grawitacyjnych. Jeśli jego obliczenia są prawidłowe, a wydaje się, że przeprowadził je skrupulatnie, to pogrzebał nasze własne wyliczenia, przyznaje Ali-Haïmoud. To by oznaczało, że czarne dziury rzeczywiście mogą stanowić całą ciemną materię.
      W latach 70. Stephen Hawking i Bernard Carr wysunęli hipotezę, że w czasie pierwszych ułamków sekundy po Wielkim Wybuchu, w rozszerzającym się wszechświecie pojawiały się niewielkie fluktuacje materii, które zamieniały się w czarne dziury. Hawking przeprowadził nawet zgrubne obliczenia, z których wynikało, że jeśli te czarne dziury miały rozmiar większy od małych asteroid, to istnieją do dzisiaj. W latach 90. zarysowano nieco bardziej szczegółowy obraz wydarzeń. Produkcję takich czarnych dziur przyspieszało ochładzanie się materii. Gdy po tysięcznych częściach sekundy od Wielkiego Wybuchu wszechświat nieco się ochłodził, kwarki i gluony z pierwotnej zupy zaczęły łączyć się w cięższe cząstki. Spadło ciśnienie, co spowodowało, że jeszcze więcej regionów zapadło się do czarnych dziur.
      Jednak przed 30 laty nie rozumiano dobrze fizyki plazmy kwarkowo-gluonowej, więc nikt nie potrafił precyzyjnie obliczyć, jak pojawienie się innych cząstek wpłynęło na tworzenie się czarnych dziur, jak masywne były to dziury, ani jak wiele mogło ich powstać. Ponadto zbytnio się tym tematem nie zajmowano. Pierwotne dziury nie były potrzebne, gdyż panował szeroko rozpowszechniony pogląd, że ciemną materię tworzą WIMPy (słabo oddziałujące masywne cząstki). Pierwotne czarne dziury odeszły w zapomnienie, stawały się przedmiotem kpin.
      Jednak WIMP-ów nie odkryto, za to coraz więcej wiemy od warunkach, jakie mogły panować na samym początku wszechświata.
      Od kilku lat niektórzy naukowcy bardziej intensywnie zajmują się pierwotnymi czarnymi dziurami. Publikowane prace pokazują, w jaki sposób mogły one powstać. Pierwsza generacja czarnych dziur mogła pojawić się po spadku temperatury wszechświata i utworzeniu przez kwarki i gluony pierwszych protonów i neutronów. Spowodowany tym spadek ciśnienia wywołał tworzenie się czarnych dziur, z których każda mogła wchłonąć ze swojej okolicy materię o masie około 1 masy Słońca. Oddziaływanie czarnej dziury było ograniczone horyzontem.
      Jednak wszechświat nadal się ochładzał. Zaczęły formować się kolejne cząstki, jak piony. To znowu spowodowało spadek ciśnienia i masowe pojawianie się kolejnych pierwotnych czarnych dziur. Jako, że wszechświat ciągle się rozszerzał, dziury należące do tej drugiej generacji mogły wchłaniać już więcej materii. Z obliczeń wynika, że było to około 30 mas Słońca. Dokładnie tyle, ile czarne dziury wykrywane przez LIGO/Virgo.
      Po uruchomieniu LIGO zainteresowanie koncepcją pierwotnych czarnych dziur wzrosło. Jednak Ali-Haïmoud przedstawił wspomnianą wcześniej pracę, w której odrzucił tę koncepcję. Obliczył bowiem, że dziur powinno być tak dużo, że rejestrowalibyśmy obecnie tysiące razy więcej fal grawitacyjnych niż rejestrujemy.
      Z zagadnieniem tym postanowił zmierzyć się Karsten Jedamzik, kosmolog z Montpellier. Gdy stworzył numeryczną symulację wszechświata pełnego obecnie czarnych dziur, odkrył zjawisko, którego Ali-Haimoud nie zauważył. Stwierdził otóż, że we wszechświecie pełnym czarnych dziur rzeczywiście dochodziłoby do bardzo częstego tworzenia się układów podwójnych takich obiektów. Jednak równie często do takiego układu podwójnego zbliżyłaby się trzecia czarna dziura i zamieniłaby się miejscami z jedną z dziur układu. Taki proces ciągle by się powtarzał. Z czasem, jak wylicza Jedamzik, takie ciągle zmieniające partnera czarne dziury tworzyłyby układy podwójne o niemal kołowych orbitach. W takich układach do zderzeń dochodziłoby bardzo rzadko. Z obliczeń Jedamzika wynika, że z powodu opisanego zjawiska nawet we wszechświecie pełnym czarnych dziur, notowalibyśmy fale grawitacyjne równie rzadko co obecnie.
      Co więcej Jedamzik oblicza, że pierwotne czarne dziury tworzą gromady o średnicy niemal 4 lat świetlnych. W takich gromadach może znajdować się około 1000 czarnych dziur. W centrum gromady skupiają się dziury o masie około 30 mas Słońca, na jej obrzeżach krążą mniej masywne czarne dziury. Takie gromady mogą znajdować się dosłownie wszędzie.
      Prace Jedamzika niczego jeszcze nie przesądzają. One wypełniają luki w nieistniejącej teorii, mówi Carl Rodriguez, astrofizyk z Carnegie Mellon Univeristy. Zwolennicy hipotezy pierwotnych czarnych dziur mają jeszcze wiele do zrobienia. W sygnałach z LIGO obserwujemy pewne dziwne zjawiska, jednak wszystko, co dotychczas zarejestrowaliśmy, można wytłumaczyć istnieniem standardowego procesu ewolucji gwiazd.
      Wygląda jednak na to, że istnienie bądź nieistnienie pierwotnych czarnych dziur zostanie dość szybko rozstrzygnięte. To nie jest nic w rodzaju teorii strun, gdzie dekadę czy trzy dekady później wciąż trwa dyskusja, stwierdza Chrisitan Byrnes z University of Sussex. Rosnąca czułość LIGO już wkrótce powinna pozwolić albo na wykrycie czarnej dziury o masie poniżej masy gwiazdowej, albo też na znalezienie ścisłego limitu minimalnej masy dla czarnych dziur.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronauci przebywający na Międzynarodowej Stacji Kosmicznej ewakuowali się na pokład pojazdu Sojuz, a sama stacja wykonała manewr obronny, by uniknąć zderzenia ze swobodnie poruszającym się obiektem. Co prawda miał on przelecieć w odległości kilkunastu kilometrów od ISS, jednak na wszelki wypadek dwóch Rosjan i Amerykanina ewakuowano, a stację przesunięto.
      Manewr zakończono, a astronauci mogli wyjść z bezpiecznego miejsca, poinformował na Twitterze szef NASA, Jim Bridenstine. Do zbliżenia się obiektu do stacji doszło dzisiaj o godzinie 00:21 czasu polskiego.
      Międzynarodowa Stacja Kosmiczna znajdujesię na wysokości 420 kilometrów nad Ziemią i porusza się z prędkością 27 568 km/h. Przy tej prędkości zderzenie nawet z niewielkim obiektem może dokonać poważnych zniszczeń.
      W latach 1999–2018 ISS wykonała 25 manewrów w celu uniknięcia zderzenia ze zbliżającymi się obiektami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.
      Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).
      W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.
      Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.
      Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.
      Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.
      Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.
      W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.
      Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści z Niemieckiego Synchrotronu Elektronowego (DESY – Deutsches Elektronen-Synchrotron) i Uniwesytetu w Hamburgu osiągnęli ważny krok milowy na drodze do stworzenia akceleratora cząstek przyszłości. Po raz pierwszy w historii laserowy akcelerator plazmowy pracował bez przerwy dłużej niż przez dobę. Urządzenie LUX było uruchomione przez 30 godzin.
      To przybliża nas do momentu, gdy ten innowacyjny akcelerator cząstek będzie mógł pracować w trybie ciągłym. Najwyższy czas, by technologia ta wyszła z laboratorium i znalazła zastosowanie w praktyce, mówi dyrektor Wydziału Akceleratora w DESY, Wim Leemans. Przed kilku laty brał on udział w stworzeniu w USA wyjątkowego lasera BELLA.
      Fizycy mają nadzieję, że technologia laserowych akceleratorów plazmowych pozwoli na budowę kompaktowych akceleratorów o unikatowych właściwościach, które znajdą liczne zastosowania. W technologii tej impuls laserowy tworzy falę plazmy w cienkim zbiorniku kapilarnym. Plazma to gaz, którego molekuły zostały pozbawione elektronów. W LUX gazem tym jest wodór.
      Impulsy lasera żłobią sobie drogę w gazie, pozbawiając molekuły wodoru elektronów i usuwając je na bok. Wzbudzone impulsem światła elektrony uzyskują dużą energię i są niesione przez dodatnio naładowaną falę plazmy przed nimi, wyjaśnia Andreas Maier, który stał na czele grupy badawczej DESY.
      Technika ta pozwala na uzyskanie nawet 1000-krotnie większych przyspieszeń cząstek niż za pomocą najpotężniejszych tradycyjnych akceleratorów. Można więc przyspieszać je do olbrzymich prędkości na krótkich odcinkach. A to oznacza, że laserowe akceleratory plazmowe mogą być potężnymi kompaktowymi urządzeniami, które znajdą zastosowanie zarówno w naukach podstawowych jak i w medycynie.
      Technika wymaga jeszcze dopracowania i przed naukowcami jest sporo problemów technicznych do rozwiązania. Teraz, gdy możemy uruchamiać nasze wiązki przez dłuższy czas, łatwiej nam będzie rozwiązać te problemy, dodaje Maier.
      Podczas rekordowo długiej pracy naukowcom udało się uzyskać ponad 100 000 wiązek elektronów. Wiązka była generowana w mniej niż sekundę. Dzięki temu zdobyto olbrzymie ilości danych dotyczących pracy akceleratora. Teraz możemy na przykład precyzyjnie zidentyfikować, w którym miejscu lasera generowane są niepożądane fluktuacje wiązki. Wiemy więc, gdzie zacząć prace nad poprawą jej jakości. To zaś podstawa do opracowania aktywnych technik stabilizacji wiązki, podobnych do tych, jakie są wykorzystywane w tradycyjnych wielkich akceleratorach, stwierdza Leemans.
      Naukowcy mówią, że ich system już teraz mógłby pracować dłużej niż 30 godzin, ale celowo zatrzymali go po 30 godzinach. Po pierwszym takim udanym eksperymencie powtarzali go jeszcze trzykrotnie. To dowodzi, że laserowe akceleratory plazmowe mogą generować powtarzalny i kontrolowalny impuls. To pozwala na dalszy rozwój tej technologii, podsumowuje Leemans. O szczegółach można przeczytać na łamach Physical Review X.
      Zainteresowanie laserowymi akceleratorami plazmowymi szybko rośnie. Niedawno informowaliśmy, że europejskie konsorcjum EuPRAXIA chce zbudować praktyczny akcelerator plazmowy. Obecnie na świecie istnieje około 20 takich prototypowych urządzeń.

      « powrót do artykułu
×
×
  • Create New...