Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wiemy, jak używanie marihuany przez nastolatków zwiększa podatność na uzależnienie od kokainy

Rekomendowane odpowiedzi

Kontakt z marihuaną w wieku nastoletnim może ułatwiać uzależnienie się od kokainy. Naukowcy z Columbia University i włoskiego Uniwersytetu w Cagliari jako pierwsi przeprowadzili badania na poziomie molekularnym obserwując, jak wczesne wystawienie na działanie marihuany wpływa na późniejszą reakcję mózgu na kontakt z kokainą.

W ramach badań na gryzoniach uczeni obserwowali, jakie zmiany zachodzą w mózgach młodych (odpowiadających nastoletnim ludziom) i dorosłych osobników. I jednym i drugim podawano syntetyczne kannabinoidy, a następnie kokainę. Naukowcy zaobserwowali, że po podaniu narkotyków w mózgach młodych zwierząt – ale nie dorosłych – dochodziło do zmian molekularnych i epigenetycznych. Odkrycie pozwala dokładniej przyjrzeć się temu, w jaki sposób używanie kannabinoidów w wieku nastoletnim może zwiększyć podatność na kokainę i ułatwiać uzależnienie od tego narkotyku.

Nasze badania na szczurach są pierwszymi, podczas których zmapowano epigenetyczny i molekularny mechanizm, za pomocą którego kokaina oddziałuje na mózgi już wcześniej wystawione na działanie kannabinoidów. To daje nam lepsze pojęcie na temat biologicznych podstaw mechanizmów, które mogą zwiększać ryzyko nadużywania i uzależnienia się od narkotyków, mówi współautor badań, laureat nagrody Nobla, doktor Eric Kandel.

Nie od dzisiaj wiadomo, że ludzie – i zwierzęta – różnie reagują na pierwszy kontakt z narkotykiem, a ta pierwsza reakcja pozwala przewidzieć dalsze zachowanie. Na przykład, jeśli pierwsze zetknięcie się człowieka z kokainą będzie odczuwane pozytywnie, to z większym prawdopodobieństwem ponownie zażyje on kokainę, czas do drugiego zażycia będzie krótszy i z większym prawdopodobieństwem się uzależni, czytamy w artykule opublikowanym na łamach PNAS.

Mamy też coraz więcej dowodów łączących używanie kannabinoidów w wieku nastoletnim ze zwiększonym ryzykiem późniejszego używania kokainy oraz ze zwiększonym jej oddziaływaniem na człowieka. Również testy na zwierzętach pokazały, że kannabinoidy mogą uwrażliwiać na kokainę. Zwierzęta, które zetknęły się z kannabinoidami częściej samodzielnie podają sobie kokainę.

Z badań epidemiologicznych wiemy, że wiele osób, które są uzależnione od kokainy, wcześniej używały marihuany, a ich pierwsze doświadczenie z narkotykami może mieć olbrzymi wpływ na to, czy będą ich nadal używali. Jednak wiele pytań pozostaje bez odpowiedzi. Dotyczą one na przykład wpływu konopi na mózg, mówi współautorka badań, doktor Denise Kandel. Dotychczas dysponowaliśmy danymi behawioralnymi, jednak nie mieliśmy neurobiologicznych dowodów wskazujących, że kannabinoidy mogą wpływać na reakcję mózgu na zetknięcie się z kokainą.

Dotychczasowe badania ujawniły chemiczną stronę wpływu obu narkotyków na mózg. Badania nad uzależniającymi właściwościami kokainy koncentrowały się na mezolimbicznym szlaku dopaminergicznym. Odgrywa on ważną rolę w odczuwaniu nagrody i przyjemności. Jako, że marihuana zwiększa aktywność tego szlaku w sposób podobny do kokainy, wpływa też na cały rozległy system neurochemiczny zwany układem endokannabinoidowym. To kluczowy system dla rozwoju mózgu, który to proces wciąż trwa w wieku nastoletnim, dodaje doktor Philippe Melas.

W ostatnich latach pojawiły się badania wskazujące, że rozwój uzależnienia od kokainy ma związek z układ glutaminianergiczny, a z kolei marihuana wpływ na przebieg sygnałów w tym układzie. Dlatego też włosko-amerykański zespół naukowy postanowił zbadać potencjalny związek pomiędzy oboma narkotykami. Uczeni sprawdzali, jak mózgi szczurów reagują najpierw na podanie syntetycznego kannabinoidu WIN, a następnie na podanie kokainy.

Okazało się, że mózgi młodych szczurów, którym podano WIN mocniej reagowały na pierwszy kontakt z kokainą, niż mózgi szczurów, które z WIN się nie zetknęły. Co istotne, zjawisko to zaobserwowaliśmy u młodych szczurów, ale nie u dorosłych, mówi Melas. Gdy uczeni bliżej przyjrzeli się temu zagadnieniu, okazało się, że gdy młode szczury zetknęły się z kannabinoidem, to sposób, w jaki działała na nie następnie kokaina był związany z kluczowymi zmianami molekularnymi. Dotyczyły one zarówno zmian w receptorach glutaminergicznych, jak i znaczących zmian epigenetycznych.

Co ciekawe, zespół z Columbia Univeristy wcześniej prowadził podobne badania nad epigenetycznymi zmianami dotyczącymi reakcji dorosłych mózgów na kontakt z nikotyną i alkoholem. Zmiany takie zaobserwowano. Tym razem jednak okazało się, że w przypadku marihuany zmiany takie zachodzą tylko w młodych mózgach. Występują one w korze przedczołowej, która odgrywa kluczową rolę w takich zadaniach jak planowanie długoterminowe czy samokontrola i jest jednym z ostatnich obszarów mózgu, który osiąga dojrzałość.

Wyniki najnowszych badań sugerują, że wystawienie wciąż rozwijającego się mózgu na działanie kannabinoidu wpływa na wywoływaną przez kokainę hiperacetylację histonów w dorosłej korze przedczołowej. Jako, że acetylacja histonów zwiększa dostępność do chromatyny, powstało pytanie, czy zmiany obserwowane w młodym mózgu przekładają się na szeroką dostępność do chromatyny. Okazało się, że hiperacetylacja histonów nie prowadziła do ogólnych szerokich zmian w dostępności do chromatyny w skali całego genomu. Okazało się jednak, że powoduje to zwiększony dostęp do chromatyny i alternatywny splicing niektórych genów.

W podsumowaniu badań naukowcy stwierdzili, że wystawienie na działanie kannabinoidów w wieku nastoletnim prowadzi do zmian w ekspresji genów wywołanych oddziaływaniem kokainy, pojawieniem się alternatywnego splicingu w genach powiązanych z receptorami neuroprzekaźników oraz zwiększonym wpływem kokainy na fosforylację protein. Innymi słowy, używanie marihuany w wieku nastoletnim większa prawdopodobieństwo, że pierwsze doświadczenie takiej osoby z kokainą będzie pozytywne, co z kolei może wzmocnić jej predyspozycję do używania i uzależnienia się od kokainy.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Czy coś może łączyć zdrowe noworodki z osobami cierpiącymi na chorobę Alzhemera? Okazuje się, że tak. Jak donosi międzynarodowy zespół naukowy, u jednych i drugich występuje podniesiony poziom biomarkerów odpowiedzialnych za alzheimera. Mowa tutaj o fosforylowanym białku tau, a konkretnie o jego odmianie p-tau217. Jest ono od dawna wykorzystywane w testach diagnostycznych choroby Alzheimera. A noworodki mają go więcej niż cierpiący na alzheimera.
      Zwiększenie poziomu p-tau217 we krwi ma być oznaką odkładania się w mózgu białka β-amyloidowego w postaci blaszek amyloidowych. Oczywistym jest, że u noworodków takie patologiczne zmiany nie występują, zatem u nich zwiększenie p-tau217 musi być odzwierciedleniem innego, całkowicie zdrowego, procesu.
      Badacze ze Szwecji, Australii, Norwegii i Hiszpanii przeanalizowali próbki krwi ponad 400 osób. Były wśrod nich noworodki, wcześniaki, młodzi dorośli, starsi dorośli oraz osoby ze zdiagnozowaną chorobą Alzheimera. Okazało się, że najwyższy poziom p-tau217 występował u noworodków, a szczególnie u wcześniaków. W ciągu pierwszych miesięcy życia poziom ten spadał, aż w końcu stabilizował się na poziomie osób dorosłych.
      Wydaje się, że o ile u osób z chorobą Alzheimera zwiększony poziom p-tau217 powiązany jest z tworzeniem się splątków tau, które uszkadzają mózg, to wydaje się, że u noworodków wspomaga on zdrowy rozwój mózgu, wzrost neuronów i ich łączenie się z innymi neuronami. Badacze zauważyli też związek z terminem porodu, a poziomem p-tau217. Im wcześniej się dziecko urodziło, tym wyższy miało poziom tego biomarkera, co może sugerować, że wspomaga on gwałtowny rozwój mózgu w trudnych warunkach wcześniactwa.
      Najbardziej interesującym aspektem odkrycia jest przypuszczenie, że być może na początkowych etapach życia nasze mózgi mogą posiadać mechanizm chroniący przed szkodliwym wpływem białek tau. Jeśli zrozumiemy, jak ten mechanizm działa i dlaczego tracimy go z wiekiem, może uda się opracować nowe metody leczenia. Jeśli nauczymy się, w jaki sposób mózgi noworodków utrzymują tau w ryzach, być może będziemy w stanie naśladować ten proces, by spowolnić lub zatrzymać postępy choroby Alzheimera, mówi główny autor badań, Fernando Gonzalez-Ortiz.
      Źródło: The potential dual role of tau phosphorylation: plasma phosphorylated-tau217 in newborns and Alzheimer’s disease, https://academic.oup.com/braincomms/article/7/3/fcaf221/8158110

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Koreańscy uczeni poinformowali na łamach Occupational & Environmental Medicine, że długie godziny pracy – zdefiniowane tutaj jako praca przez co najmniej 52 godziny w tygodniu – mogą zmieniać strukturę mózgu. Zmiany dotyczą przede wszystkim obszarów powiązanych z regulacją emocji i funkcjami wykonawczymi, jak pamięć robocza i rozwiązywanie problemów. Nadmierna praca powoduje zmiany adaptacyjne w mózgu, które mogą negatywnie wpływać na nasze zdrowie.
      Dostarczamy nowych neurobiologicznych dowodów łączących wydłużony czas pracy ze zmianami strukturalnymi mózgu, podkreślając potrzebę dalszych badań, by zrozumieć długoterminowe skutki poznawcze i emocjonalne przepracowania, czytamy w opublikowanym artykule.
      Nauka zna psychologiczne skutki przepracowania, jednak niewiele wiadomo, w jaki sposób wpływa ono na strukturę mózgu. Już wcześniej pojawiały się sugestie mówiące, że związane z nadmierną pracą chroniczny stres i brak odpoczynku mogą zmieniać budowę mózgu, jednak były one poparte niewielką liczbą dowodów.
      Autorzy najnowszych badań przyjrzeli się 110 ochotnikom. Grupa składała się z lekarzy, pielęgniarek oraz innych pracowników służby zdrowia. Wśród nich były 32 osoby (28%), które pracowały co najmniej 52 godziny w tygodniu.
      Osoby, które spędzały więcej czasu w pracy to zwykle osoby młodsze (przeważnie poniżej 45. roku życie) i lepiej wykształcone, niż osoby pracujące mniej. Różnice w objętości poszczególnych obszarów mózgu oceniano za pomocą badań morfometrycznych opartych o pomiar voksela (VBM). Analizy wykazały istnienie znaczących zmian u osób, które pracowały powyżej 52 godzin tygodniowo. Miały one średnio o 19-procent większą objętość zakrętu czołowego środkowego, który jest zaangażowany w skupienie uwagi, pamięć roboczą i przetwarzanie języka. Powiększonych było też 16 innych regionów, w tym zakręt czołowy górny, odpowiedzialny m.in. za funkcje wykonawcze (podejmowanie decyzji, myślenie abstrakcyjne, planowanie).
      Autorzy badań podkreślają, że badania przeprowadzili na niewielkiej grupie osób i uchwyciły one tylko różnie istniejące w konkretnym momencie. Nie można zatem na ich podstawie wyciągać jednoznacznych wniosków co do skutków i przyczyn. Nie wiadomo, czy zmiany te są skutkiem czy przyczyną przepracowywania się.
      Mimo to badania wskazują na istnienie potencjalnego związku pomiędzy zmianami objętości mózgu a długimi godzinami pracy. Zmiany zaobserwowane u osób przepracowujących się mogą być adaptacją do chronicznego stresu, stwierdzili naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Słuchając ulubionej muzyki odczuwamy przyjemność, niejednokrotnie wiąże się to z przeżywaniem różnych emocji. Teraz, dzięki pracy naukowców z fińskiego Uniwersytetu w Turku dowiadujemy się, w jaki sposób muzyka na nas działa. Uczeni puszczali ochotnikom ich ulubioną muzykę, badając jednocześnie ich mózgi za pomocą pozytonowej tomografii emisyjnej (PET). Okazało się, że ulubione dźwięki aktywują układ opioidowy mózgu.
      Badania PET wykazały, że w czasie gdy badani słuchali ulubionej muzyki, w licznych częściach mózgu, związanych z odczuwaniem przyjemności, doszło do uwolnienia opioidów. Wzorzec tego uwolnienia powiązano ze zgłaszanym przez uczestników odczuwaniem przyjemności. Dodatkowo za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) skorelowano indywidualną dla każdego z badanych liczbę receptorów opioidowych z aktywacją mózgu. Im więcej receptorów miał mózg danej osoby, tym silniejsze pobudzenie widać było na fMRI.
      Po raz pierwszy bezpośrednio obserwujemy, że słuchanie muzyki uruchamia układ opioidowy mózgu. Uwalnianie opioidów wyjaśnia, dlaczego muzyka powoduje u nas tak silne uczucie przyjemności, mimo że nie jest ona powiązana z zachowaniami niezbędnymi do przetrwania, takimi jak pożywianie się czy uprawianie seksu, mówi Vesa Putkinen. Profesor Luri Nummenmaa dodaje, że układ opioidowy powiązany jest też ze znoszeniem bólu, zatem jego pobudzenie przez muzykę może wyjaśniać, dlaczego słuchanie muzyki może działać przeciwbólowo.
      Receptorem, który zapewnia nam przyjemność ze słuchania muzyki jest μ (MOR). Jego aktywacja powoduje działanie przeciwbólowe – to na niego działają opioidy stosowane w leczeniu bólu, euforię (przez co przyczynia się do uzależnień) czy uspokojenie oraz senność.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania przeprowadzone na gryzoniach w średnim wieku wskazują, że brak witaminy K może zwiększać stan zapalny i zakłócać proliferację komórek w hipokampie, części mózgu odpowiedzialnej za pamięć i uczenie się. Wyniki pokazują zatem, w jaki sposób niedobór witaminy K może wpływać na nasze zdolności poznawcze w miarę, jak przybywa nam lat.
      Witamina K obecna jest w zielonych warzywach liściastych, jak brukselka, szpinak, brokuły czy jarmuż. Wiadomo, że odkrywa ważną rolę w krzepnięciu krwi, prawdopodobnie ma też pozytywny wpływ na zdrowie układu krwionośnego i stawy. Teraz dowiadujemy się, że może mieć też wpływ na ludzki mózg.
      Istnieją badania sugerujące, że witamina K chroni mózg przed spadkiem zdolności poznawczych w miarę, jak przybywa nam lat. Nasze prace mają na celu zrozumienie tego mechanizmu, mówi główny autor badań Tong Zheng z Tufts University.
      Naukowcy przez pół roku karmili jedną grupę myszy standardową dietą, a druga grupa otrzymywała dietę ubogą w witaminę K. Naukowcy skupili się na metachinonie-4 (witamina K2 MK-4), związku z grupy witamin K, który występuje w tkance mózgowej. Odkryli, że u myszy karmionych dietą ubogą w witaminę K poziom tego związku był znacząco niższy. A jego niedobór wiązał się z zauważalnym spadkiem zdolności poznawczych zwierząt. Podczas testów takie myszy miały na przykład problem w odróżnieniu nowych obiektów do już znanych, co jest jasną wskazówką problemów z pamięcią. Podczas innego z badań – mających sprawdzić orientację w przestrzeni – myszy miały nauczyć się, gdzie znajduje się ukryta platforma z wodą. Te z niedoborem witaminy K uczyły się znacznie dłużej.
      Badania tkanki mózgowej myszy wykazały istnienie znaczących zmian w hipokampie. U tych, które spożywały zbyt mało witaminy K doszło do zmniejszenia liczby komórek ulegających proliferacji w zakręcie zębatym, co przekładało się na mniej intensywną neurogenezę. Neurogeneza odgrywa kluczową rolę w procesach uczenia się i zapamiętywania, a jej zaburzenie może bezpośrednio wpływać na zaobserwowany spadek zdolności poznawczych, wyjaśnia Zheng. Jakby jeszcze tego było mało, naukowcy znaleźli dowody na zwiększenie się stanu zapalnego w mózgach myszy z niedoborem witaminy K. Odkryliśmy w nich większą liczbę nadaktywnych komórek mikrogleju, dodaje uczony.
      Autorzy badań podkreślają, że ich wyniki nie oznaczają, iż ludzie powinni przyjmować suplementy witaminy K. Ludzie powinni stosować zdrową dietę i jeść warzywa, mówi profesor Sarah Booth. Uczeni z Tufts University współpracują z Rush University Medical Center w Chicago, gdzie zespół Booth prowadzi badania obserwacyjne dotyczące ludzkiego mózgu i zdolności poznawczych. Wiemy z nich, że zdrowa dieta działa, że ludzie, który nie odżywiają się zdrowo, nie żyją tak długo, a ich zdolności poznawcze nie dorównują ludziom ze zdrową dietą. Łącząc badania na ludziach i zwierzętach możemy lepiej poznać mechanimy różnych zjawisk i dowiedzieć się, w jaki sposób długoterminowo poprawić zdrowie mózgu, dodaje uczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wystarczy 5 dni nadmiernego spożywania batonów czekoladowych, chipsów i innego śmieciowego jedzenia, by doszło do zmian w aktywności mózgu. Niemieccy naukowcy wykazali, że krótkoterminowe spożywanie słodyczy i tłuszczów uruchamia mechanizm gromadzenia tłuszczu w wątrobie oraz zaburza reakcję mózgu na insulinę, a skutki tego utrzymują się po zaprzestaniu jedzenia wspomnianych pokarmów. Wzorce pracy mózgu po kilku dniach spożywania śmieciowego jedzenia są podobne do tych, widocznych u osób z otyłością. Nie można wykluczyć, że reakcja mózgu na insulinę pozwala mu zaadaptować się do krótkoterminowych zmian diety i ułatwia rozwój otyłości oraz innych chorób.
      Nie spodziewałam się, że skutki będą tak bardzo widoczne u zdrowych ludzi, mówi główna autorka badań, neurolog Stephanie Kullmann. Celem naukowców było zbadanie wpływu krótkoterminowego spożywania wysoce przetworzonych i kalorycznych produktów na reakcję mózgu na insulinę, zanim jeszcze zaczynamy przybierać na wadze.
      Do badań zaangażowano 29 zdrowych mężczyzn w wieku 19–27 lat, których BMI mieściło się w zakresie 19–25 kg/m2 (obecnie przygotowywane są analogiczne badania na kobietach). Podzielono ich na dwie grupy. To jednej, która miała spożywać wysokokaloryczną dietę, przypisano 18 osób. Pozostali stanowili grupę kontrolną. Grupa na diecie wysokokalorycznej miała dziennie spożywać dodatkowo 1500 kcal w postaci chipsów, batonów itp. Aktywność fizyczną ograniczono do 4000 kroków dziennie.
      Początkowo osoby przypisane do grupy spożywającej dodatkowe kalorie zareagowały na to entuzjastycznie. Jednak już w czwartym dniu eksperymentu jedzenie batonów czy chipsów było dla nich męczarnią. W efekcie spożyli oni średnio 1200 kcal dziennie więcej, a nie zakładane 1500 kcal. Mimo to okazało się, że znacząco z 1,55% (± 2,2%) do 2,54% (± 3,5%) zwiększyło się u nich otłuszczenie wątroby. Nie zauważono znaczących różnic w masie działa, zmiany wrażliwości na insulinę w innych tkankach niż mózgu czy wskaźnikach zapalnych.
      Po pięciu dniach u osób z grupy zjadającej słodkie i tłuste przekąski doszło do zmniejszenia czułości układu nagrody. Niekorzystne skutki śmieciowej diety utrzymywały się przez około tydzień po powrocie do diety prawidłowej.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...