Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Struktury konieczne do rozwoju mowy pojawiły się w mózgu już 25 milionów lat temu

Recommended Posts

Dotychczas sądzono, że struktury w naszym mózgu, które umożliwiły rozwój mowy, pojawiły się w nim przed 5 milionami lat. Teraz międzynarodowy zespół naukowy przesunął ten termin i to znacznie. Europejscy i amerykańscy uczeni twierdzą, że początków takich struktur należy szukać co najmniej 25 milionów lat temu. Odkrycie opisano na łamach Nature.

Znalezienie takiej struktury jest dla neurologów jak znalezienie skamieniałości, która rzuca nowe światło na ewolucję. Musimy jednak pamiętać, że mózgi nie ulegają fosylizacji. Dlatego też eksperci muszą próbować odtwarzać ewolucję mózgu porównując mózgi obecnie żyjących naczelnych i człowieka.

Kluczową strukturą dla rozwoju mowy jest pęczek łukowaty (AF). To wiązka włókien kojarzeniowych rozciągających się od płata skroniowego po płat czołowy. Zespół z USA, Wielkiej Brytanii i Niemiec wykorzystał ogólnodostępne skany mózgu człowieka, szympansa i makaka królewskiego, a następnie przeprowadził analizę odpowiednich obszarów. Uczeni odkryli istnienie homologicznej struktury rozpoczynającej się w korze słuchowej.

Wiadomo, że szympansy posiadają strukturę homologiczną (czyli mającą wspólne z człowiekiem pochodzenie ewolucyjne) do ludzkiego pęczka łukowatego, ale istnieją już spory co do tego, że podobna struktura występuje u makaków. Ostatnie dowody naukowe wskazują, że różnicowanie się pęczka łukowatego jest związane z rozrastaniem się zakrętu skroniowego środkowego (MTG). To wyróżniająca się struktura u ludzi, która jest wyraźnie widoczna też u szympansów, ale nie stwierdzono jej u nieczłowiekowatych.

Autorzy najnowszych badań postanowili sprawdzić, czy struktura homologiczna do AF może u nieczłowiekowatych istnieć pomimo braku u nich MTG. Mogliśmy tylko przypuszczać, ale nie byliśmy pewni, czy u nieczłowiekowatych istnieją homologiczne struktury, co u człowieka. Przyznam, że byłem zaskoczony ich odkryciem, mówi profesor Chris Petkov z Newcastle University.

Badania te rzucają nowe światło na ewolucyjne początku AF. Wskazują na fragment AF związany ze zmysłem słuchu i dowodzą istnienia homologicznej struktury u szympansów i makaka królewskiego, czytamy w opublikowanej pracy. Okazało się też, że o ile u małp nieczłowiekowatych AF jest dość symetryczna, to u ludzi występuje silna asymetria, z bardziej rozwiniętą lewą stroną struktury, która odgrywa zasadniczą rolę w rozwoju mowy.

Biorąc pod uwagę fakt, że asymetria taka występuje też u szympansów, można stwierdzić, że struktury w mózgu potrzebne do pojawienia się mowy zaczęły przybierać ostateczną formę u wspólnego przodka człowieka i małp człowiekowatych, z późniejszym jeszcze różnicowaniem u naszych bezpośrednich przodków. Jednak obecne badania wskazują, że wspólni przodkowie małp i małp człekokształtnych posiadali symetryczną strukturę łączącą części płata skroniowego odpowiedzialne za słuch z dolną częścią płata czołowego. U ludzi w tych obszarach znajdują się dwie niezwykle ważne dla rozwoju mowy struktury – ośrodek Wernickiego i ośrodek Broki.

Nasze badania przesunęły pojawienie się prototypu AF odpowiedzialnego za rozpoznawanie mowy do czasu ostatniego wspólnego przodka ludzi i makaków (około 25 milionów lat temu), podczas gdy do niedawna sądzono, że początków tych struktur należy szukać u ostatniego wspólnego przodka ludzi i szympansów sprzed około 5 milionów lat, stwierdzili autorzy odkrycia. Nasze obserwacje zgadzają się też z hipotezą, że zdolność do przetwarzania języka rozwinęła się ze struktur odpowiedzialnych za słuch, dodają.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Gdy na początku XX wieku naukowcy zaczęli wykorzystywać elektrody do rejestrowania aktywności mózgu, zauważyli sygnały, które nazwali „falami mózgowymi”. Od tamtej pory są one przedmiotem intensywnych badań. Wiemy, że fale są przejawem zsynchronizowanej aktywności neuronów, a zmiany w intensywności fal reprezentują zmniejszającą się i zwiększającą aktywność grup neuronów. Powstaje pytanie, czy i w jaki sposób fale te uczestniczą w przekazywaniu informacji.
      Kwestię tę postanowił rozstrzygnąć doktorant Tal Dalal z Multidyscyplinarnego Centrum Badań nad Mózgiem na Uniwersytecie Bar-Ilan. Z artykułu opublikowanego na łamach Cell Reports [PDF] dowiadujemy się, że badacze zmienili poziom synchronizacji fal mózgowych w obszarze przekazywania informacji. Następnie sprawdzili, jak wpłynęło to na przekazanie informacji i jak została ona zrozumiana przez obszar mózgu, do którego dotarła.
      Badacze skupili się na części mózgu zawiadującej układem węchowym. Charakteryzuje się ona bowiem silną aktywnością fal mózgowych, a za ich synchronizację odpowiada w tym regionie szczególny typ neuronów. Uczeni wykorzystali metody optogenetyczne, pozwalające na włączanie i wyłączanie aktywności neuronów za pomocą impulsów światła. Dzięki temu mogli obserwować, w jaki sposób włączenie i wyłączenie synchronizacji w jednym regionie wpływało na przekazywanie informacji do innego obszaru mózgu.
      Manipulacji dokonywano w miejscu (nazwijmy je regionem początkowym), w którym dochodzi do wstępnego przetwarzania informacji z układu węchowego. Stamtąd informacja, zsynchronizowana lub niezsynchronizowana, trafiała do kolejnego obszaru (region II), gdzie odbywa się jej przetwarzanie na wyższym poziomie.
      Naukowcy odkryli, że zwiększenie synchronizacji neuronów w regionie początkowym prowadziło do znaczącej poprawy tempa transmisji i przetwarzania informacji w regionie II. Gdy zaś poziom synchronizacji zmniejszono, do regionu II trafiała niepełna informacja.
      Naukowcy dokonali też niespodziewanego odkrycia. Ze zdumieniem zauważyliśmy, że aktywowanie neuronów odpowiedzialnych za synchronizację, prowadziło do spadku ogólnej aktywności w regionie początkowym, więc można się było spodziewać, że do regionu II trafi mniej informacji. Jednak fakt, że dane wyjściowe zostały lepiej zsynchronizowane kompensował zmniejszoną aktywność, a nawet zapewniał lepszą transmisję, mówi Dalal.
      Autorzy badań doszli więc do wniosku, że synchronizacja jest niezwykle ważna dla przekazywania i przetwarzania informacji. To zaś może wyjaśniać, dlaczego zmniejszenie poziomu synchronizacji neuronów, co objawia się mniejszą intensywnością fal mózgowych, może prowadzić do deficytów poznawczych widocznych np. w chorobie Alzheimera. Dotychczasowe badania pokazywały, że istnieje korelacja pomiędzy zmniejszonym poziomem synchronizacji, a chorobami neurodegeneracyjnymi, ale nie wiedzieliśmy, dlaczego tak się dzieje. Teraz wykazaliśmy, że synchronizacja bierze udział w przekazywaniu i przetwarzaniu informacji, więc to może być powód obserwowanych deficytów u pacjentów, mówi Dalal.
      Badania prowadzone przez Dalala i profesora Rafiego Haddada mogą doprowadzić do pojawienia się nowych terapii w chorobach neurodegeneracyjnych. Nie można wykluczyć, że w przyszłości uda się przywrócić odpowiednią sychnchronizację fal mózgowych u chorych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy człowiek zaczął używać kamiennych narzędzi, wszystko się zmieniło. Narzędzia, zarówno te celowo modyfikowane,  jak i niemodyfikowane, zwiększyły nisze ekologiczne zajmowane przez naszych przodków. Pozwoliły na korzystanie z nowych zasobów pożywienia. Nasi przodkowie mogli dzięki nim zabijać zwierzęta, dzielić ich mięso, korzystać ze skór, rozbijać kości, obrabiać twarde rośliny. To zaś doprowadziło do zmian ewolucyjnych.
      Dostęp do większej ilości bardziej zróżnicowanego pożywienia, wytwarzanie i posługiwanie się kamiennymi narzędziami doprowadziły do ewolucji uzębienia, morfologii dłoni czy rozmiarów mózgu. Jednak mimo tego, jak ważnym wydarzeniem było używanie narzędzi, wciąż niewiele wiemy o tym, jak do tego doszło. Jednym ze sposób na badanie procesu adaptacji takich narzędzi jest przyglądanie się naszym najbliższym przodkom, wielkim małpom.
      Naukowcy z Uniwersytetów w Tybindze, Barcelonie, Oslo i Instytutu Antropologii Ewolucyjnej im. Maxa Plancka badali orangutany pod kątem zarówno samodzielnego jak i społecznego uczenia się wytwarzania i używania kamiennych narzędzi. Kamienne narzędzia, ze względu na ich odporność na destrukcyjne procesy zewnętrzne, są najczęściej spotykanymi narzędziami znajdowanymi przez archeologów. Wśród narzędzi typowych dla wczesnej epoki kamienia znajdziemy zarówno celowo modyfikowane kamienie o ostrych krawędziach, jak i niemodyfikowane kamienie wykorzystywane w roli młotków czy kowadeł. Nasi przodkowie korzystali z nich już 3,3 miliona lat temu, mówi główna autorka badań, doktor Alba Motes-Rodrigo. Wykorzystanie tych kamieni było kamieniem milowym ludzkiej ewolucji.
      Naukowcy przeprowadzili serię eksperymentów z orangutanami, które nie miały doświadczenia w używaniu narzędzi. Dwóm samcom z Zoo Kristiansand w Norwegii dostarczono młot do betonu, kawałek czertu (twardej skały krzemionkowej) oraz dwie skrzynki zawierające owoc. Aby dostać się do skrzynek trzeba było w jednej z nich przeciąć linę (symulowała ona ścięgno zwierzęce, a w drugiej silikonową membranę symulującą skórę. Oba zwierzęta uderzały młotkiem w ściany i podłogę, ale żaden z nich nie spróbował użyć go do odłupania z czertu zaostrzonego fragmentu.
      W drugim z eksperymentów orangutanom dostarczono różne materiały, a wśród nich był wykonany ludzką ręką krzemienny odłupek. Tym razem jedna z małp próbowała użyć odłupka do przecięcia silikonowej membrany.
      W trzecim z eksperymentów wzięły udział trzy samice orangutanów z Twycross Zoo w Wielkiej Brytanii. Tym razem sprawdzano, czy małpy mogą nauczyć się wykonywania kamiennych narzędzi obserwując człowieka. Po pokazie jedna z małp użyła młotka, by uderzyć nim w krawędź czertu, tak, jak zademonstrował to człowiek.
      Autorzy badań twierdzą, że są one pierwszymi, podczas których obserwowano, by orangutan spontanicznie wykorzystywał narzędzie do cięcia. Nasze badania sugerują, że dwa główne warunki wstępne dotyczące użycia kamiennych narzędzi – zdolność do uderzania kamieni młotem oraz rozpoznanie ostrych kamieni jako narzędzi do cięcia – mogły istnieć już u naszego ostatniego przodka z orangutanami, przed 13 milionami lat, czytamy na łamach PLOS One. Stwierdziliśmy też, że orangutany spontanicznie uderzają kamieniami w inne kamienie, co czasem może prowadzić do pojawiania się ostrych odłupków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Termity oddzieliły się od innych karaczanów przed 150 milionami lat i wyewoluowały do życia społecznego. Obecnie niektóre gatunki termitów tworzą gigantyczne kolonie składające się z milionów osobników żyjących w ziemi. Inne, w tym termity żyjące w drewnie, żyją w niedużych koloniach liczących kilka tysięcy osobników. Naukowcy z Okinawy odkryli, że termity drzewne odbyły dziesiątki podróży transoceanicznych, dzięki którym są tak zróżnicowane jak obecnie.
      Termity drzewne, Kalotermitidae, są często postrzegane jako prymitywne, gdyż tworzą małe kolnie i oddzieliły się od innych termitów dość wcześnie, już około 100 milionów lat temu. Jednak tak naprawdę niewiele wiemy o tej rodzinie termitów, mówi główny autor badań, doktor Aleš Buček z Okinawskiego Podyplomowego Uniwersytetu Nauki i Technologii (OIST) . Dotychczas większość badań nad tą rodziną koncentrowało się nad jednym gatunkiem, często występującym w domach mieszkalnych i traktowanym jak szkodnik.
      Naukowcy z OIST przez 30 lat kolekcjonowali przedstawicieli Kalotermitidae. Do analizy wybrali przedstawicieli 120 gatunków. Niektóre z nich były reprezentowane przez wiele próbek zebranych w różnych miejscach. Te 120 gatunków to ponad 25% wszystkich znanych Kalotermitidae. W OIST wykonano sekwencjonowanie DNA owadów.
      Okazało się, że w ciągu ostatnich 50 milionów lat termity przekroczyły oceany co najmniej 40 razy, pływając m.in. pomiędzy Ameryką Południową a Afryką. W skali milionów lat podróże te skutkowały dużym różnicowaniem się Kalotermitidae. One są bardzo dobre w podróżach transoceanicznych. Ich domem jest drewno, które spełnia rolę niewielkiego statku, mówi Buček.
      Z badań wynika, że większość rodzajów Kalotermitidae pochodzi z Ameryki Południowej. Uczeni potwierdzili też, że w ostatnich wiekach ludzie wzięli udział w większości procesu rozprzestrzeniania się termitów.
      Badania podważają też powszechne przekonanie, jakoby termity drzewne wiodły prymitywny tryb życia. Okazało się bowiem, że wśród najstarszych gatunków Kalotermitidae są i takie, które tworzą wielkie kolonie zamieszkujące różne kawałki drewna połączone ze sobą podziemnymi tunelami.
      To pokazuje, jak mało wiemy o termitach, zróżnicowaniu ich styli życia oraz organizacji ich życia społecznego. Im więcej dowiemy się o ich zachowaniu i ekologii, tym lepiej odtworzymy ewolucję ich życia społecznego i dowiemy się, dlaczego odniosły taki sukces, dodaje profesor Tom Bourguignon, jeden z autorów badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W magazynach Muzeum Zoologii Uniwersytetu w Cambridge odkryto słoje z nieskatalogowanymi okazami dziobaków i kolczatek sprzed 150 lat. Okazy pozyskał w XIX w. William Caldwell. Odegrały one kluczową rolę w udowodnieniu, że niektóre ssaki składają jaja.
      Ponieważ ta unikatowa kolekcja nie została skatalogowana, pracownicy muzeum nie mieli pojęcia o jej istnieniu. Niedawno zastępca dyrektora placówki Jack Ashby prowadził jednak badania do swojej nowej książki o australijskich ssakach, co utorowało drogę małemu „śledztwu”.
      Czytanie XIX-wiecznych informacji o tym, że dziobaki i kolczatki składają jaja, to jedno, a zobaczenie fizycznych okazów, które wiążą nas z tym odkryciem sprzed niemal 150 lat, to drugie - podkreślił Ashby. Z doświadczenia wiem, że na świecie nie ma kolekcji historii naturalnej z kompletnym katalogiem, dlatego podejrzewałem, że okazy Caldwella muszą gdzieś tu być - dodał.
      Okazało się, że miał rację. Trzy miesiące po tym, jak Ashby poprosił menedżera kolekcji Mathew Lowe'a, by miał oko na tę sprawę, znaleziono pudełko z okazami i notatką sugerującą powiązania z Caldwellem. Śledztwo Ashby'ego potwierdziło, że to rzeczywiście zbiór szkockiego zoologa.
      Nim Europejczycy po raz pierwszy zobaczyli dziobaki i kolczatki w latach 90. XVIII w., zakładano, że wszystkie ssaki są żyworodne. Pytanie, czy niektóre ssaki składają jaja, stało się potem jednym z najważniejszych pytań naukowych XIX w. "W XIX w. wielu konserwatywnych naukowców nie chciało wierzyć, że ssaki składające jaja mogą istnieć, ponieważ stanowiłoby to poparcie dla teorii ewolucji - idei, że jedna grupa zwierząt jest w stanie przekształcić się w inną" - wyjaśnia Ashby. Jego zdaniem, dla wielu XIX-wiecznych uczonych przyznanie, że ssaki mogą być podobne jaszczurkom czy żabom oznaczałaby degradację ssaków do poziomu zwierząt, które uznawano za niższą formę życia.
      W 1883 roku William Caldwell został wysłany do Australii z zadaniem jednoznacznego rozwiązania sporu o istnienie ssaków jajorodnych. Jego wyprawę finansowały University of Cambridge, Royal Society oraz rząd brytyjski. Podczas intensywnie prowadzonych prac polowych Caldwell, dzięki pomocy licznej grupy Aborygenów, zebrał około 1400 okazów.
      Był pierwszym, który zebrał kolekcję dokumentującą cały cykl życia ssaków jajorodnych, od zapłodnionych jaj po dorosłego osobnika. W jego zbiorach znajdziemy kolczatkowate, dziobaki i torbacze.
      Już w 1884 roku znalazł kolczatkę z jajem w „wylęgarce” oraz dziobaka z jajem w gnieździe, który właśnie składał kolejne jajo. Były to ostateczne dowody na istnienie ssaków jajorodnych.
      Ashby zwraca uwagę, że od ponad 100 lat kolczatki i dziobaki opisywane są jako dziwne i prymitywne, co jest spuścizną po ich dawnych opisach. Nie są ani dziwne, ani prymitywne. Wyewoluowały tak, jak wszystkie inne zwierzęta, po prostu nigdy nie przestały składać jaj, mówi. Zauważa, że kolczatki to najbardziej rozpowszechnione ssaki Australii. Przystosowały się do życia w różnym klimacie, od gór pokrytych śniegiem po upalne pustynie. Z kolei dziobaki, to jedyne ssaki wytwarzające jad. Kolczatki i dziobaki to jedne z nielicznych ssaków posługujących się elektrolokacją.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych.
      Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan.
      Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów.
      Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%.
      Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii.
      Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...