Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Po raz pierwszy udało się zmierzyć prędkość wiatrów wiejących na powierzchni brązowego karła. Dokonali tego astronomowie, którzy wykorzystali Karl G. Jansky Very Large Array (VLA) oraz Teleskop Kosmiczny Spitzera.

Opierając się na tym, co wiemy o wielkich planetach, takich jak Jowisz czy Saturn, naukowcy pod kierunkiem Katelyn Allers z Bucknell University zdali sobie sprawę z faktu, że prawdopodobnie uda się zmierzyć prędkość wiatru na powierzchni brązowego karła, wykorzystując w tym celu VLA i Spitzera. Gdy doszliśmy do takiego wniosku, zdziwiliśmy się, że nikt dotychczas nie przeprowadził takich badań, mówi Allers.

Naukowcy wzięli na cel brązowego karła 2MASS J10475385+2124234. Ma on średnicę mniej więcej Jowisza, ale jest 40-krotnie bardziej masywny. Obiekt znajduje się w odległości około 34 lat świetlnych od Ziemi.

Zauważyliśmy, że okres obrotowy Jowisza obserwowany za pomocą radioteleskopów jest inny niż okres obrotowy obserwowany w świetle widzialnym i w podczerwieni, mówi Allers. Jak wyjaśnia uczona, dzieje się tak, gdyż fale radiowe wchodzą w interakcje z polem magnetycznym planety, natomiast emisja w podczerwieni pochodzi z górnych warstw atmosfery. Wnętrze planety, jej źródło pola magnetycznego, obraca się wolniej niż atmosfera. A różnica wynika z prędkości wiatrów.

Stwierdziliśmy, że takie samo zjawisko powinniśmy zaobserwować w przypadku brązowych karłów. Postanowiliśmy więc przyjrzeć się okresowi obrotowemu czerwonego karła zarówno za pomocą radioteleskopu, jak i w podczerwieni, powiedziała Johanna Vos z Amerykańskiego Muzeum Historii Naturalnej.

Obserwacje rzeczywiście wykazały, że atmosfera brązowego karła obrana się szybciej niż jego wnętrze. A różnica jest znacznie większa, niż w przypadku Jowisza. O ile bowiem prędkość wiatru wiejącego na Jowiszu wynosi około 370 km/h, to dla brązowego karła obliczono ją na około 2300 km/h. Obliczenia te zgodne są z teorią i symulacjami, przewidującymi wyższe prędkości wiatru na brązowych karłach, mówi Allers.

Technika wykorzystana przez zespół Allers może zostać użyta do badania prędkości wiatrów na planetach pozasłonecznych.


« powrót do artykułu

Share this post


Link to post
Share on other sites
4 godziny temu, KopalniaWiedzy.pl napisał:

Ma on średnicę mniej więcej Jowisza, ale jest 40-krotnie bardziej masywny.

Gdyby ktoś miał wątpliwości w kontekście zależności masa-promień (tam akurat odwrotnie ;)), to polecam dość ładny, wielce poglądowy i klarowny obrazek:
http://www.astrophysicsspectator.org/topics/overview/SizeStarsPlanets.html
Podstawą do tego typu rozważań zawsze jest równanie stanu, ale trochę w tej kwestii już wiemy.

Share this post


Link to post
Share on other sites

Mnie co innego zaciekawiło. Skoro ten obiekt jest brązowym karłem, to znaczy, że jest gwiazdą. A jakie zatem wiatry wieją na Słońcu? Szukam jakiegoś info, ale wszystko co znajduję dotyczy wiatru słonecznego, a to nie o taki wiatr chodzi.

Share this post


Link to post
Share on other sites

Brązowe karły nie są gwiazdami. to przerośnięte gazowe olbrzymy jak Jowisz o masie zbyt małej aby odpalić reakcję termojądrową.

Nie wiem czy jest sens mówić o wietrze w gwieździe. W przeciwieństwie do brązowych karłów w gwieździe z tego co wiem ruchy są chaotyczne, jak podczas gotowania, ale może jakiś lepszy spec od astronomii to potwierdzi.

Swoją drogą niezły paradoks, że przerośnięte olbrzymy nazywamy karłami.

Edited by Flaku

Share this post


Link to post
Share on other sites
Godzinę temu, Sławko napisał:

Skoro ten obiekt jest brązowym karłem, to znaczy, że jest gwiazdą

Właśnie nie bardzo.

Godzinę temu, Sławko napisał:

A jakie zatem wiatry wieją na Słońcu? Szukam jakiegoś info, ale wszystko co znajduję dotyczy wiatru słonecznego, a to nie o taki wiatr chodzi.

Wiatry gwiazdowe to dość ugruntowany termin, który znaczy zdecydowanie coś innego niż w artykule, bo takich "wiatrów" na Słońcu zwyczajnie nie ma.

3 minuty temu, Flaku napisał:

W przeciwieństwie do brązowych karłów w gwieździe z tego co wiem ruchy są chaotyczne, jak podczas gotowania

Wiatry gwiazdowe mają różne przyczyny, ale są zdecydowanie bardziej spektakularne niż to, o czym mówimy powyżej. Różnią się generalnie tym, że z grubsza są centralne, znaczy od gwiazdy.

15 minut temu, Flaku napisał:

Swoją drogą niezły paradoks, że przerośnięte olbrzymy nazywamy karłami.

:)
No cóż, Słońce też jest karłem, co prawda ciągu głównego, ale jednak. Te "przerośnięte olbrzymy" to generalnie degeneraci ;), podobnie jak białe karły i gwiazdy neutronowe. Dla nich większa masa oznacza mniejszy rozmiar. Bywa.

Share this post


Link to post
Share on other sites
W dniu 11.04.2020 o 15:45, Astro napisał:
W dniu 11.04.2020 o 14:16, Sławko napisał:

Skoro ten obiekt jest brązowym karłem, to znaczy, że jest gwiazdą

Właśnie nie bardzo.

No wiem. Też to pisałem bez przekonania, bo chyba naukowcy nie do końca jeszcze dogadali się jak te obiekty klasyfikować. A istnienie na nich wiatrów może być kolejnym czynnikiem, który sprawia, że nie powinno się tych obiektów traktować jako gwiazdy.

Z tego powodu własnie podejrzewałem, że z wiatrem na Słońcu może być pewien kłopot, dlatego Was zapytałem. Dzięki wszystkim za odpowiedzi.

Share this post


Link to post
Share on other sites

Dzięki, zatem może trochę dopowiem.
Gwiazdę definiujemy jako coś, co samo z siebie wytwarza energię na drodze przemian jądrowych (z grubsza, nie wchodząc w szczegóły). Daje to jakieś
(znów bez wchodzenia w szczegóły jak metaliczność itp.) ok. 0,08 masy słonecznej jako granicę, czyli jesteśmy (znów z grubsza) w czerwonych karłach typu M.
Ta granica nie jest jakaś fizyczna, bo "obiektów" po jednej i drugiej stronie znajdujemy sporo, bez jakiegoś ostrego przejścia, bo taka jest natura.

Te po lewej (mam na myśli klasyczny wykres H-R :)), czyli gwiazdy, mają w sobie to coś co sprawia, że nie bardzo mogą na nich "wiać" systematyczne "wiatry"
jak na Jowiszu itp., bo turbulencje (z grubsza, o czym F
laku wspomniał, choć to dla mniej masywnych gwiazd), bo spory strumień promieniowania
(jak na masywniejszych gwiazdach). Wiatry gwiazdowe to coś od kilku km/s do kilkuset+ km/s (szybkość niekoniecznie koreluje z tempem utraty masy).
W każdym razie te najbardziej masywne na MS jak gwiazdy typu O potrafią w ciągu swojego krótkiego żywota (tysiące razy krótszego niż słoneczny)
zgubić w wiatrach gwiazdowych i połowę swojej pierwotnej masy.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Western University odkryli trzy najszybciej obracające się brązowe karły, obiekty zwane czasem nieudanymi gwiazdami. To masywne obiekty znajdujące się pomiędzy planetami a gwiazdami. Są bardziej masywne niż planety, ale zbyt mało masywne by mogły zachodzić w nich przemiany wodoru w hel. Teraz Megan Tannock i Stanimir Metchey informują o zidentyfikowaniu brązowych karłów, które obracają się blisko limitu prędkości, powyżej którego mogą zostać rozerwane.
      Odkryte przez Kanadyjczyków obiekty mają średnicę podobną do Jowisza, ale są od niego od 40 do 70 razy bardziej masywne. Każdy z nich wykonuje pełny obrót w ciągu zaledwie godziny. Dotychczas najszybszy znany brązowy karzeł obracał się w ciągu 1,4 godziny. Jowiszowi zaś pełen obrót zajmuje 10 godzin. Z dokonanych obliczeń wynika, że prędkość obrotowa wspomnianych karłów wynosi aż 100 km/s czyli 360 000 km/h. Dla porównania, Jowisz obraca się z prędkością 12,6 km/s (45 360 km/h).
      Wydaje się, że dotarliśmy do granicy prędkości obrotowej brązowych karłów, mówi Tannock. Pomimo intensywnych poszukiwań naukowcom nie udało się dotychczas znaleźć szybciej obracających się brązowych karłów. Szybszy obrót mógłby spowodować ich rozerwanie.
      Wspomniane brązowe karły zostały odkryte przez teleskop 2MASS, który działał do 2001 roku. Kanadyjczycy dokonali pomiarów prędkości karłów wykorzystując dane z Teleskopu Kosmicznego Spitzera (zakończył on swoją misję w styczniu 2020), a następnie potwierdzli je za pomocą naziemnych Gemini North i Magellan.
      Brązowe karły, podobnie jak gwiazdy i planety, obracają się wokół własnej osi. W miarę jak stygną i się kurczą, obracają się coraz szybciej. Dotychczas udało się zmierzyć prędkość obrotową około 80 tego typu obiektów. Są wśród nich takie, które wykonują pełny obrót poniżej 2 godzin, jak i takie, które potrzebują na to kilkudziesięciu godzin.
      Przy takiej różnorodności tempa obrotu naukowców zdziwił fakt, że trafili na trzy obiekty obracają się niemal z tą samą prędkością około 1 obrotu na godzinę. Właściwości tej nie można w tej chwili łączyć ze wspólnymi znanymi cechami fizycznymi. Jeden z karłów jest gorący, drugi zimy, a temperatura trzeciego mieści się pomiędzy tymi dwoma. Różnica temperatur wskazuje zaś, że są w różnym wieku. Uczeni nie wykluczają, że to przypadkowa zbieżność. Karły niemal osiągnęły maksymalną prędkość obrotu. Jeśli ją przekroczą, zostaną rozerwane przez siły odśrodkowe.
      Specjaliści uważają, że brązowe karły składają się głównie z wodoru i helu. Są też znacznie bardziej gęste niż olbrzymie planety. Wodór w jądrach brązowych karłów jest poddany tak wysokiemu ciśnieniu, że zachowuje się jak metal. Występują w nim swobodne elektrony. Zmieniają one sposób dystrybucji ciepła we wnętrzu karła, a wraz z bardzo szybkim obrotem może to wpływać na rozkład w nim masy. Stan wodoru czy jakiegokolwiek innego gazu poddanego tak wielkim ciśnieniom to dla nas zagadka. Nawet w najbardziej zaawansowanych laboratoriach trudno jest uzyskać taki stan materii, stwierdza Metchev.
      Obecne modele mówią, że maksymalna prędkość obrotowa brązowego karła to 50 do 80 procent szybciej niż 1 obrót na godzinę. Być może jednak modele te nie oddają całego obrazu. Może istnieć nieznanym nam czynnik, który powoduje, że brązowe karły nie mogą obracać się szybciej niż te, które zaobserwowaliśmy, dodaje Metchev.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa astronomów bezpośrednio zmierzyła prędkość wiatró wiejących w stratosferze Jowisza. Zespół kierowany przez Thibaulta Cavalie z Laboratorium Astrofizyki w Bordeux wykorzystał Atacama Large Milimeter/submilimeter Array (ALMA) do obserwacji ruchu nowych molekuł, jakie powstały w atmosferze Jowisza po uderzeniu w nią komety Shoemaker-Levy 9 w roku 1994. Uzyskane wyniki wskazują, że badane wiatry mogą być najpotężniejszym zjawiskiem meteorologicznym w Układzie Słonecznym.
      Do pomiarów prędkości wiatru w stratosferze Jowisza nie można wykorzystać chmur, gdyż ich tam nie ma. Na szczęście naukowcy wpadli na alternatywą metodę pomiaru. Postanowili zbadać prędkość ruchu molekuł cyjanowodoru, które pojawiły się w prądach strumieniowych atmosfery Jowisza po kolizji z Shoemaker-Levy 9.
      Najbardziej spektakularnym z dokonanych przez nas odkryć jest zaobserwowanie silnych prądów strumieniowych, których prędkość sięga 400 metrów na sekundę. Wieją one pod zorzami w pobliżu biegunów, mówi Cavalie. Te 400 m/s to 1440 km/h, czyli ponaddwukrotnie szybciej niż największa prędkość wiatru zarejestrowana w Wielkiej Czerwonej Plamie na Jowiszu. To jednocześnie ponaddtrzykrotnie więcej niż prędkość najszybszego zarejestrowanego wiatru na Ziemi.
      Nasze badania wskazują, że te prądy strumieniowe zachowują się jak olbrzymie wiry o średnicy nawet czterokrotnie większej od średnicy Ziemi i o wysokości sięgającej 900 kilometrów, mówi współautor badań Bilal Benmahi. Tak duży wir to wydarzenie meteorologiczne unikatowe w skali Układu Słonecznego, dodaje Cavalie.
      Naukowcy od pewnego czasu wiedzą, że w pobliżu biegunów Jowisza wieją silne wiatry, jednak są one obecne setki kilometrów wyżej, niż obszar badany przez zespół Cavalie. Dotychczas sądzono, że wiatry te znacznie słabną, zanim dotrą w głębsze partie atmosfery. Dane z ALMA mówią coś wręcz przeciwnego, stwierdza Cavalie.
      Uczeni wykorzystali 42 z 66 anten ALMA ulokowanych na pustyni Atacama. Dzięki nim zmierzyli efekt Dopplera, niewielkie zmiany w częstotliwości promieniowania emitowanego przez molekuły. Zmiany te powodowane są ruchem molekuł. Obserwując te zmiany mogliśmy wyliczyć prędkość wiatru tak, jak można wyliczyć prędkość poruszającego się pociągu ze zmiany częstotliwości jego sygnału ostrzegawczego, wyjaśnia Vincent Hue z Southwest Research Institute.
      Uczeni zmierzyli nie tylko prędkości w stratosferze w pobliżu biegunów. Dokonali również pierwszych bezpośrednich pomiarów prądów strumieniowych w stratosferze wokół równika. Okazało się, że wieją one średnio z prędkością 600 km/h.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już dzisiaj ok. godziny po zachodzie Słońca będzie można oglądać zjawisko, które mogło być Gwiazdą Betlejemską. Mowa tutaj o Wielkiej Koniunkcji, czyli zbliżeniu Jowisza i Saturna, największych planet Układu Słonecznego. Tegoroczna Wielka Koniunkcja będzie najwspanialszym takim zjawiskiem od 800 lat.
      Do Wielkiej Koniunkcji, czyli takiego ustawienia Jowisza i Saturna, że z naszego punktu widzenia planety wydają się niezwykle blisko, dochodzi regularnie co 20 lat. Co więc będzie takiego niezwykłego w tegorocznej koniunkcji? Otóż po raz pierwszy od niemal 400 lat planety będą tak blisko siebie, a po raz pierwszy od niemal 800 lat tak bliska koniunkcja będzie miała miejsce w nocy, zatem będziemy mogli ją obserwować.
      Podczas tegorocznej Wielkiej Koniunkcji Jowisz i Saturn będzie dzieliło zaledwie 1/10 stopnia. Jeśli pogoda pozwoli, to obie planety z łatwością powinniśmy zobaczyć wkrótce po zachodzie Słońca patrząc na południowy-zachód. Planety będzie można zobaczyć gołym okiem, a wystarczy lornetka lub mały teleskop, by ujrzeć też cztery duże księżyce Jowisza.
      W tym roku mamy wyjątkowe szczęście, gdyż Wielka Koniunkcja przypadnie na najdłuższą noc w roku. Do tego planety będą wyjątkowo blisko siebie. Ostatni raz tak blisko były w 1623 roku, jednak do największego zbliżenia doszło za dnia. Ostatni ludzie mogli oglądać nocą tak duże zbliżenie obu planet w 1226 roku.
      Dyrektor Obserwatorium Watykańskiego, fizyk i astronom, jezuita Guy Consolmagno, mówi, że jednym z możliwych wyjaśnień fenomenu Gwiazdy Betlejemskiej jest właśnie bardzo jasna Wielka Koniunkcja.
      Jeśli nawet pogoda uniemożliwi dzisiaj obserwowanie koniunkcji, to Jowisz z Saturnem będą wspólnie wędrowały jeszcze przez około tydzień. Kolejna okazja do obserwacji równie bliskiej Wielkiej Koniunkcji będzie w marcu 2080 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Spełniły się najgorsze obawy inżynierów – teleskop w Arecibo się zawalił. Do katastrofy doszło, gdy ważąca 900 ton platforma odbiornika radioteleskopu spadła na znajdującą się 120 metrów niżej czaszę. Na szczęście – jak wcześniej informowaliśmy – już wcześniej specjaliści doszli do wniosku, że cała struktura jest niestabilna i teleskop przeznaczono do likwidacji, zatem w katastrofie nikt nie ucierpiał.
      Arecibo to jedno z najważniejszych urządzeń w historii radioastronomii. Teleskop przez ponad pół wieku służył światowej nauce, dostarczając niezwykle ważnych danych. Przez dziesięciolecia był też największym tego typu urządzeniem. Większy – FAST – wybudowali dopiero Chińczycy, jednak jego możliwości badawcze, ze względu na lokalizację oraz pracę wyłącznie w trybie pasywnym w wielu dziedzinach nie dorównują Arecibo. A raczej nie dorównywały, gdyż dzisiaj nastąpił ostateczny koniec legendarnego obserwatorium.
      Koniec, którego można się było spodziewać, ale nikt nie przypuszczał, że nastąpi tak szybko. Już kilkanaście lat temu informowaliśmy, że Narodowa Fundacja Nauki USA od lat umieszczała utrzymanie radioteleskopu na dole listy swoich priorytetów i oczywistym było, że w bliższej niż dalszej przyszłości przestanie go finansować, przeznaczając zaoszczędzone pieniądze na nowocześniejsze, bardziej obiecujące projekty. Jednak jeszcze pół roku temu mogliśmy przypuszczać, że Arecibo będzie działał jeszcze przez kilka lat.
      Początkiem końca było zerwanie się w sierpniu jednej z lin pomocniczych podtrzymujących platformę odbiornika. Spadająca lina wybiła kilkudziesięciometrową dziurę w czaszy teleskopu. Już wówczas wykonana inspekcja kazała zadać sobie pytanie o stabilność całej struktury. Postanowiono jednak naprawić radioteleskop. I gdy czekano na dostawę nowych lin na początku listopada doszło do zerwania się kolejnej liny nośnej. To zaskoczyło specjalistów, którzy oceniali, że pozostałe liny powinny bez problemu wytrzymać obciążenia. Eksperci doszli więc do wniosku, że najwyraźniej cała struktura jest bardziej osłabiona, niż się wydaje. Kolejne ekspertyzy inżynieryjne wykazały, że teleskopu nie uda się naprawić nie narażając przy tym robotników na utratę życia. Dlatego też podjęto decyzję o jego wyburzeniu. Szczegółowo o tym informowaliśmy.
      Dzisiaj w nocy upadek platformy z odbiornikiem ostatecznie zakończył historię radioteleskopu w Arecibo.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...