Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Na Antarktydzie znaleziono pozostałości po lesie deszczowym

Rekomendowane odpowiedzi

W odległości zaledwie 900 kilometrów od Bieguna Południowego odkryto pozostałości lasu deszczowego sprzed 90 milionów lat. Analiza znalezionej tam gleby z okresu kredy wykazała obecność korzeni, pyłków i zarodników. To dowodzi, że klimat był wówczas znacznie cieplejszy niż dotychczas sądzono.

Odkrycia dokonał niemiecko-brytyjski zespół naukowy z Centrum Badań Polarnych i Morskich w Niemczech oraz Imperial College London. Współautorka badań profesor Tina van de Flierdt z Imperial, powiedziała: zachowanie pozostałości po lesie sprzed 90 milionów lat jest czymś wyjątkowym, jednak jeszcze bardziej zaskakujące jest to, czego się dowiadujemy. Nawet w czasie nocy polarnej bagniste lasy deszczowe mogły rosnąc w pobliżu Bieguna Południowego, pokazując nam, ze klimat był wówczas cieplejszy niż sądziliśmy.

To również sugeruje, że poziom CO2 w atmosferze był w tym okresie wyższy, niż przypuszczano, co może być przyczynkiem do zmian w modelach klimatycznych dla tamtego okresu. Środkowy okres kredy (115–80 milionów lat temu) to okres największego rozkwitu dinozaurów i jednocześnie najgorętszy okres ostatnich 140 milionów lat. Poziom oceanów był wówczas o 170 metrów wyższy niż obecnie, a średnie temperatury w tropikach mogły sięgać 35 stopni Celsjusza.

Niewiele jednak wiemy o warunkach, jakie wówczas panowały w okolicach bieguna południowego. Teraz naukowcy odkryli tam pozostałości lasu deszczowego, który mógł być podobny do lasów występujących obecnie na Nowej Zelandii. I to mimo faktu, żę przez cztery miesiące w roku panuje na tym terenie mrok. Obecność lasu deszczowego sugeruje że średnie temperatury wynosiły tam około 12 stopni Celsjusza. Mało prawdopodobne, by był tam jakikolwiek lód.

Pozostałości gleby z tropikalnego lasu pochodzą z osadów pobranych w pobliżu lodowców Pine Island i Thwaites w Zachodniej Antarktyce. Uwagę naukowców przykuła część osadów o nietypowym kolorze. Przeprowadzili więc skanowanie tomografem komputerowym i ujawnili gęstą siec korzeni, które były tak dobrze zachowane, iż można było zobaczyć strukturę poszczególnych komórek. Próbka zawierała też olbrzymią ilość pyłków i zarodników, w tym pierwsze znalezione na tej szerokości geograficznej pozostałości roślin kwitnących.

Wykonana przez naukowców rekonstrukcja klimatu wykazała, że średnia roczna temperatura na tamtym obszarze wynosiła około 12 stopni Celsjusza, czyli była sporo wyższa niż w Polsce. Z kolei średnia temperatura w miesiącach letnich to około 19 stopni Celsjusza. Temperatura wody w rzekach i bagnach dochodziła do 20 stopni Celsjusza, a ilość opadów dorównywała obecnej ilości opadów w Walii.

Przed naszymi badaniami uznawano, że w kredzie koncentracja dwutlenku węgla w atmosferze wynosiła około 1000 ppn. Jednak z modeli uwzględniających zdobyte przez nas dane wynika, że taka jak opisywana temperatura na Antarktyce może być osiągnięta przy koncentracji CO2 rzędu 1120–1680 ppm, mówi główny autor badań, doktor Johann Klages z Centrum Badań Morskich i Polarnych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, KopalniaWiedzy.pl napisał:

Poziom oceanów był wówczas o 170 metrów wyższy niż obecnie

Tzn. oceany były płytsze?  Jak to porównywać przy całkowicie innym ukształtowaniu skorupy ziemskiej? Bo obecnie nie ma tyle wody aby uzyskać taki przyrost poziomu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niektóre źródła podają, że stopienie wszystkich lodów, jakie istnieją na Ziemi może podnieść poziom oceanów nawet o 200 metrów. Nie wiem na ile w tym prawdy, a na ile oszacowania. W każdym razie, wydaje mi się, że bardzo trudno jest to dokładnie obliczyć, bo należałoby znać objętość lub masę wszystkich lodów, jakie na Ziemi występują, a jest tego od groma. Antarktyda i Grenlandia są oczywiście największe. Ale ogromne obszary północnej Kanady i Rosji również pokrywają lody. Niektóre z nich są trudno dostrzegalne, bo znajdują się w tzw. wiecznej zmarzlinie. Do tego dochodzą górskie lodowce - Himalaje, Kamczatka, Alaska, Skandynawia, Alpy, to tylko drobne przykłady. Nawet w Afryce znajdziesz lodowce. Te lodowce to nie tylko to co widać z wierzchu, to także lodowe jaskinie, których ilość i wielkość chyba nawet nie jest znana. Znamy tylko te, do których odkryliśmy wejścia. Można to jedynie próbować oszacować.

Z drugiej strony podniesienie temperatury Ziemi spowoduje też większe nasycenie atmosfery parą wodną. A kiedyś dla zabawy próbowałem obliczyć o ile podniósłby się poziom oceanów, gdyby obecnie cała para wodna z atmosfery się skropliła. Niestety nie pamiętam teraz dokładnie wyniku, ale chyba wyszło mi kilka centymetrów.

 

A co do samej Antarktydy, to o ile badania kontynentów są poprawne, to ok. 90 milionów lat temu Antarktyda nie znajdowała się jeszcze na biegunie. Ona dopiero zaczynała odrywać się od Pangei i rozpoczęła dryf w kierunku bieguna. Gdyby dzisiaj znajdowała się w tym samym miejscu co wtedy, to pewnie też rosłyby na niej lasy. Z panującym wówczas klimatem nie ma to nic wspólnego. Poziom wody był wówczas wyższy, bo Pangea leżała pomiędzy biegunami i stosunkowo mało lodu gromadziło się na lądach. Wyciąganie wniosków o klimacie z samego tylko faktu, że ktoś znalazł korzonki jest absurdalne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      UWAGA: artykuł opisujący te badania został wycofany z Nature w związku z podejrzeniami o manipulowanie danymi.
      Naukowcy z University of Rochester poinformowali o osiągnięciu nadprzewodnictwa w temperaturze pokojowej. Nadprzewodnictwo to stan, w którym ładunek elektryczny może podróżować przez materiał nie napotykając żadnych oporów. Dotychczas udawało się je osiągnąć albo w niezwykle niskich temperaturach, albo przy gigantycznym ciśnieniu. Gdyby odkrycie się potwierdziło, moglibyśmy realnie myśleć o bezstratnym przesyłaniu energii, niezwykle wydajnych silnikach elektrycznych, lewitujących pociągach czy tanich magnesach do rezonansu magnetycznego i fuzji jądrowej. Jednak w mamy tutaj nie jedną, a dwie łyżki dziegciu.
      O nadprzewodnictwie wysokotemperaturowym mówi się, gdy zjawisko to zachodzi w temperaturze wyższej niż -196,2 stopni Celsjusza. Dotychczas najwyższą temperaturą, w jakiej obserwowano nadprzewodnictwo przy standardowym ciśnieniu na poziomie morza jest -140 stopni C. Naukowcy z Rochester zaobserwowali nadprzewodnictwo do temperatury 20,6 stopni Celsjusza. Tutaj jednak dochodzimy do pierwszego „ale“. Zjawisko zaobserwowano bowiem przy ciśnieniu 1 gigapaskala (GPa). To około 10 000 razy więcej niż ciśnienie na poziomie morza. Mimo to mamy tutaj do czynienia z olbrzymim postępem. Jeszcze w 2021 roku wszystko, co udało się osiągnąć to nadprzewodnictwo w temperaturze do 13,85 stopni Celsjusza przy ciśnieniu 267 GPa.
      Drugim problemem jest fakt, że niedawno ta sama grupa naukowa wycofała opublikowany już w Nature artykuł o osiągnięciu wysokotemperaturowego nadprzewodnictwa. Powodem był użycie niestandardowej metody redukcji danych, która została skrytykowana przez środowisko naukowe. Artykuł został poprawiony i obecnie jest sprawdzany przez recenzentów Nature.
      Profesor Paul Chig Wu Chu, który w latach 80. prowadził przełomowe prace na polu nadprzewodnictwa, ostrożnie podchodzi do wyników z Rochester, ale chwali sam sposób przeprowadzenia eksperymentu. Jeśli wyniki okażą się prawdziwe, to zdecydowanie mamy tutaj do czynienia ze znaczącym postępem, dodaje uczony.
      Z kolei James Walsh, profesor chemii z University of Massachusetts przypomina, że prowadzenie eksperymentów naukowych w warunkach wysokiego ciśnienia jest bardzo trudne, rodzi to dodatkowe problemy, które nie występują w innych eksperymentach. Stąd też mogą wynikać kontrowersje wokół wcześniejszej pracy grupy z University of Rochester.
      Ranga Dias, który stoi na czele zespołu badawczego z Rochester zdaje sobie sprawę, że od czasu publikacji poprzedniego artykułu jego zespół jest poddawany bardziej surowej ocenie. Dlatego też prowadzona jest polityka otwartych drzwi. "Każdy może przyjść do naszego laboratorium i obserwować, jak dokonujemy pomiarów. Udostępniliśmy recenzentom wszystkie dane", dodaje. Uczony dodaje, że podczas ponownego zbierania danych na potrzeby poprawionego artykułu współpracowali z przedstawicielami Argonne National Laboratory oraz Brookhaven National Laboratory. Dokonywaliśmy pomiarów w obecności publiczności, zapewnia.
      Materiał, w którym zaobserwowano nadprzewodnictwo w temperaturze ponad 20 stopni Celsjusza, to wodorek lutetu domieszkowany azotem. Profesor Eva Zurek ze State University of New York mówi, że potrzebne jest niezależne potwierdzenie wyników grupy Diasa. Jeśli jednak okaże się, że są one prawdziwe, uczona uważa, że opracowanie nadprzewodnika ze wzbogaconego azotem wodorku lutetu pracującego w temperaturze pokojowej lub opracowanie technologii nadprzewodzących pracujących przy umiarkowanym ciśnieniu powinno być stosunkowo proste.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Imperium tybetańskie istniało w latach 618–877 i w szczytowym okresie swojej potęgi konkurowało o wpływy w Azji Środkowej z Chinami dynastii Tang i kalifatem Abbasydów. Upadło w ciągu zaledwie kilku dekad. Naukowcy szukający przyczyn jego rozpadu zwracali dotychczas uwagę przede wszystkim na czynniki społeczno-polityczne, jak konflikty pomiędzy bon, rdzenną religią Tybetu, a buddyzmem. Autorzy najnowszej pracy uważają, że zmiany klimatyczne przyspieszyły upadek państwa.
      Około 618 roku niewielka społeczność zamieszkująca środkowy bieg rzeki Yarlung Tsangpo zakończyła proces jednoczenia większości Tybetu. Powstało państwo, które z powodzeniem konkurowało i walczyło z Chinami dynastii Tang, sięgnęło północnych Indii, Pamiru i Hindukuszu, rzucając wyzwanie Abbasydom. Imperium kontrolowało międzynarodowe szlaki handlowe, a u szczytu potęgi, w 763 roku, jego wojska zdobyły Chang'an, stolicę Chin.
      Imperium obejmuje wówczas 4,6 miliona kilometrów kwadratowych i mieszka w nim 10 milionów ludzi. Jednak już na początku IX wieku państwo przeżywa poważne kłopoty. Rozpada się w ciągu kilku dziesięcioleci. Z chińskich źródeł dowiadujemy się, że przyczyną była rywalizacja pomiędzy generałami dowodzącymi pogranicznymi armiami. Wiemy też, że doszło do napięć pomiędzy wyznawcami buddyzmu, a tradycyjnej religii bon. Były one na tyle poważne, że w 843 buddyzm został zakazany. Przyjmuje się, że rozpad imperium nastąpił w 877 roku, do roku 889 na terenie Tybetu istniało wiele mniej lub bardziej niezależnych organizmów politycznych.
      Naukowcy z Chin i Kanady wykorzystali osady z jezior z zachodniej części Wyżyny Tybetańskiej i stwierdzili, że pomiędzy VII a IX wiekiem doszło do tak znacznych zmian klimatycznych, iż odegrały one kluczową rolę w upadku imperium tybetańskiego. Okres potęgi imperium, lata ok. 600 do 800, zbiega się bowiem z niezwykle ciepłym i wilgotnym okresem. Natomiast czas, gdy imperium upadało (800-877) był okresem poważnych susz. W osadach z jezior widać, że w tym czasie okrzemki typowe dla planktonu występującego w całej kolumnie wody zostały zastąpione przez okrzemki strefy dennej (bentalu). Świadczy to o wysychaniu jezior.
      Poważne susze w połączeniu ze zmniejszeniem zdolności targanego konfliktami społeczeństwa do dostosowania się do nowej rzeczywistości, mogły prowadzić do szybkiego spadku plonów, co z kolei napędzało konflikty i przyspieszyło upadek imperium. Chociaż upadek tego silnego imperium tłumaczy się często przyczynami religijnymi i politycznymi, nasze analizy pokazują, że pogarszające się warunki klimatyczne mogły upadek ten przyspieszyć, stwierdzają autorzy badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Korony drzew lasów tropikalnych mogą znajdować się blisko granicy swojej wytrzymałości na wzrost temperatur, ostrzega międzynarodowy zespół naukowy. Uczeni połączyli dane pochodzące z instrumentów znajdujących się na Międzynarodowej Stacji Kosmicznej z eksperymentami przeprowadzanymi w lasach tropikalnych. Okazało się, że niewielki odsetek liści w lasach tropikalnych już osiąga, a momentami przekracza, graniczną temperaturę, poza którą liście nie są w stanie funkcjonować.
      Badania sugerują, że jeśli globalne ocieplenie będzie postępowało, może dojść do zamierania koron drzew w lasach tropikalnych.
      Doktor Sophie Fauset z University of Plymouth i jej zespół oceniali temperaturę liści w lasach rozsianych od Wielkiej Brytanii, przez Brazylię i Chiny, po zachodnią Afrykę. Okazało się, że w brazylijskich górach niektóre z liści mogą być aż o 18 stopni cieplejsze niż temperatura powietrza. Drzewa są kluczowym elementem reakcji planety na zmiany klimatu, a lasy tropikalne to ekosystemy o bogatej bioróżnorodności, które regulują klimat Ziemi. Jeśli zostaną zniszczone w wyniku wzrostu temperatury, stracimy główną linię obrony i ograniczymy zdolność środowiska do naturalnego do obrony przed wpływem ludzi na klimat. Inne badania, w których brałam udział, wykazały, że zdolność drzew do pochłaniania dwutlenku węgla spada w temperaturach powyżej 32 stopni Celsjusza. Jeśli nie zrobimy więcej, by uniknąć zmian klimatu, konsekwencje mogą być naprawdę poważne, mówi uczona.
      Temperatura krytyczna, powyżej której liście przestają funkcjonować, wynosi 46,7 stopnia Celsjusza. Z pomiarów wynika, że obecnie w południe temperatury liści w lasach tropikalnych wynoszą 34 stopnie Celsjusza, a bywają długie okresy, gdy przekraczają 40 stopni.
      Naukowcy oszacowali też, jaki odsetek liści może przekroczyć krytyczną temperaturę przy wzroście średniej temperatury powietrza o 2, 3 i 4 stopnie Celsjusza. W tym celu przeprowadzili eksperymenty w lasach Brazylii, Portoryko i Australii. Eksperymenty wykazały, że przy wzroście temperatury powietrza temperatura liści zwiększa się nieliniowo. W najgorszym scenariuszu, przy zwiększeniu globalnej temperatury o 4 stopnie Celsjusza, temperatura krytyczna została przekroczona w 1,3% przypadków. W 11% wyniosła ponad 43,5 stopnia, a w 0,3% - ponad 49,9 stopnia.
      Podsumowując swoje badania naukowcy doszli do wniosku, że lasy tropikalne mogą wytrzymać wzrost temperatury o 3,9 stopnia ± 0,5 stopnia zanim ich funkcje metaboliczne zostaną zaburzone. Nie wiemy jednak, na ile są one elastyczne i jak zamieranie nawet stosunkowo niewielkiego odsetka liści wpłynie na zdolność drzew do chłodzenia się. Nie wiemy też, jak szybko możemy zbliżać się do punktu krytycznego. Od kilku dekad średni wzrost temperatur jest wyraźnie szybszy niż wcześniej. Dużo zależy zaś od tego, jak będzie on postępował w samych tropikach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
      W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
      Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
      Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
      Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
      Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
      Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...