Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja odkryła antybiotyk zwalczający antybiotykooporne bakterie

Rekomendowane odpowiedzi

Algorytmy do maszynowego uczenia się pozwoliły specjalistom z MIT zidentyfikować nowe potężne antybiotyki. Podczas testów laboratoryjnych nowe związki zabiły jedne z najtrudniejszych w zwalczaniu bakterii chorobotwórczych, w tym szczepy oporne na działanie wszystkich znanych antybiotyków. Jakby tego było mało, umożliwiły one zwalczenie infekcji w dwóch różnych mysich modelach chorób.

Naukowcy wykorzystali model komputerowy, który pozwala na przeanalizowanie w ciągu zaledwie kilku dni działania setek milionów związków chemicznych. Taka analiza pozwala na wybór do dalszych badań najbardziej obiecujących środków. Uczeni szukają związków, które zabijają bakterie w inny sposób, niż obecnie znane antybiotyki.

Chcieliśmy stworzyć platformę, która pozwoliłaby nam na wykorzystanie sztucznej inteligencji do zapoczątkowania nowej epoki w odkrywaniu antybiotyków. Dzięki takiemu podejściu natrafiliśmy na zadziwiającą molekułę, która jest jednym z najpotężniejszych znanych antybiotyków, mówi profesor James Collins z MIT.

Przy okazji zidentyfikowano wiele innych obiecujących kandydatów na antybiotyki. Substancje te dopiero będą testowane. Uczeni uważają, że ich model można wykorzystać również do projektowania nowych leków.

Model maszynowego uczenia się pozwala nam masowo badać związki chemiczne. Przeprowadzenie takich badań w laboratorium byłoby niemożliwe ze względu na koszty, dodaje Regina Barzilay z Computer Science and Artificial Intelligencje Laboratory (CSAIL) na MIT.

Przez ostatnich kilkadziesiąt lat wynaleziono niewiele nowych antybiotyków, a większość z tych nowych to lekko istniejące wersje wcześniej istniejących. Obecnie wykorzystywane metody badania związków chemicznych pod kątem ich przydatności do produkcji antybiotyków są niezwykle kosztowne, wymagają dużo czasu i zwykle pozwalają zbadać wąską grupę mało zróżnicowanych środków.

Stoimy w obliczu rosnącej antybiotykooporności. Z jednej strony problem ten spowodowany jest coraz większą liczbą antybiotykoopornych patogenów, a z drugiej – powolnym postępem na tym polu, mówi Collins. Coraz częściej pojawiają się głosy, że ludzie mogą zacząć umierać na choroby zakaźne, na które nie umierali od dziesięcioleci. Dlatego też niezwykle pilnym zadaniem jest znalezienie nowych antybiotyków. Niedawno informowaliśmy o odkryciu antybiotyków, które zabijają bakterie w niespotykany dotąd sposób.

Pomysł wykorzystania komputerów do identyfikowania potencjalnych antybiotyków nie jest nowy, dotychczas jednak obliczenia takie były albo niezwykle czasochłonne, albo niedokładne. Nowe sieci neuronowe znacznie skracają czas obliczeń.

Naukowcy z MIT dostosowali swój model obliczeniowy tak, by poszukiwał związków chemicznych mogących być zabójczymi dla E. coli. Swój model trenowali na około 2500 molekuł, w tym na około 1700 lekach zatwierdzonych przez FDA i około 800 naturalnych produktach o zróżnicowanych strukturach i działaniu.

Po zakończonym treningu sieć neuronowa została przetestowana na należącej do Broad Institute bazie Drug Repository Hub, która zawiera około 6000 związków. Algorytm znalazł tam molekułę, która miała strukturę inną od wszystkich istniejących antybiotyków i o której sądził, że będzie wykazywała silne działanie antybakteryjne. Naukowcy najpierw poddali tę molekułę badaniom za pomocą innego modelu maszynowego i stwierdzili, że prawdopodobnie jest ona mało toksyczna dla ludzi.

Halicyna, bo tak nazwano tę molekułę, była w przeszłości badana pod kątem jej przydatności w leczeniu cukrzycy. Teraz naukowcy przetestowali ją na dziesiątkach szczepów bakterii pobranych od ludzi. Okazało się, że zabija ona wiele antybiotykoopornych patogenów, w tym Clostridium difficile, Acinetobacter bumannii czy Mycobacterium turebculosis. Jedynym patogenem, który oparł się jej działaniu była Pseudomonas aeruginosa, powodująca trudne w leczeniu choroby płuc.

Po pomyślnych testach in vitro rozpoczęto badania na zwierzętach. Halicynę użyto do leczenia myszy zarażonej wcześniej opornym na działanie wszystkich znanych antybiotyków szczepem A. baumannii. Halicyna w ciągu 24 godzin zwalczyła infekcję u zwierząt.

Wstępne badania sugerują, że nowy antybiotyk działa poprzez zaburzanie u bakterii możliwości utrzymania gradientu elektrochemicznego w błonie komórkowej. Gradient ten jest niezbędny m.in. do wytwarzania molekuły ATP, niezbędnego nośnika energii. Bakterie pozbawione ATP giną. Naukowcy uważają, że bakteriom będzie bardzo trudno nabyć oporność na taki sposób działania antybiotyku.

Podczas obecnych badań uczeni stwierdzili, że w ciągu 30 dni leczenia u E. coli w ogóle nie rozwinęła się oporność na halicynę. Tymczasem np. oporność na cyprofloksacynę zaczyna się u E. coli rozwijać w ciągu 1-3 dni od podania, a po 30 dniach bakteria jest 200-krotnie bardziej oporn działanie tego środka.

Po zidentyfikowaniu halicyny naukowcy wykorzystali swój model do przeanalizowania ponad 100 milionów molekuł wybranych z bazy ZINC15, w której znajduje się około 1,5 miliarda molekuł. Analiza trwała trzy doby, a sztuczna inteligencja znalazła 23 molekuły, które są niepodobne do żadnego istniejącego antybiotyku i nie powinny być toksyczne dla ludzi. Podczas testów in vitro stwierdzono, że 8 z tych molekuł wykazuje właściwości antybakteryjne, z czego 2 są szczególnie silne. Uczeni planują dalsze badania tych molekuł oraz analizę pozostałych związków z ZINC15.

Naukowcy planują dalsze udoskonalanie swojego modelu. Chcą np. by poszukiwał on związków zdolnych do zabicia konkretnego gatunku bakterii, a oszczędzenia bakterii korzystnych dla ludzi.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Absolutnie niesamowite. W zasadzie podwójna wygrana. Nie dość że wreszcie znika strach przed lekoodpornością bakterii to dodatkowo wydaje mi się że jest to pierwszy raz jak sztuczna inteligencja przysługuje się ludzkości. Za 50 lat ludzie pewnie będą żyli po 150 lat a pracować nikt nie będzie bo co tu robić jak Ai jest sprawniejsze od całej armi medyków i w tydzień robi testy które ludzkości zajęłyby dziesiątki jak nie setki lat. Myślę że od tego odkrycia zaczyna się nowy etap.

Edytowane przez Miroslaw

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
8 godzin temu, Miroslaw napisał:

Za 50 lat ludzie pewnie będą żyli po 150 lat

To implikuje globalną populację na poziomie pół miliona :P
 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 hours ago, peceed said:

To implikuje globalną populację na poziomie pół miliona :P

Mirosław nie jest w klubie :)

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
      Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
      Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
      Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Ala ma kota” to pierwsze i – prawdę mówiąc – jedyne zdanie, jakie pamiętam z elementarza. I właśnie to zdanie, które kolejne pokolenia poznają dzięki legendarnemu „Elementarzowi” Falskiego prowadzi nas przez „Prosto o AI. Jak działa i myśli sztuczna inteligencja” autorstwa Roberta Trypuza. Niewielki format książeczki sugeruje, że znajdziemy w niej niezbyt wiele informacji. Nic bardziej mylnego. To elementarz, skoncentrowana skarbnica wiedzy o technologii, która już teraz w znaczącym stopniu zmienia ludzkie życie.
      Robert Trypuz jest praktykiem. To specjalista w dziedzinie Semnatic Web i inżynierii danych. Doktorat z informatyki i telekomunikacji uzyskał na Uniwersytecie w Trydencie, jest też doktorem habilitowanym filozofii z KUL. I, co widać w książce, jest entuzjastą sztucznej inteligencji, o której potrafi bardzo ciekawie pisać.
      Z „Prosto o AI” dowiemy się na przykład jak wygląda programowanie AI w porównaniu z programowaniem klasycznym, jak AI rozumie tekst, czym jest osadzanie słów oraz jakie rewolucyjne podejście pozwoliło na skonstruowanie dużych modeli językowych, w tym najbardziej znanego z nich ChataGPT. Przeczytamy o sieciach konwolucyjnych w medycynie, uczeniu ze wzmacnianiem, autor – pamiętajmy, że jest również filozofem – opisuje, czym jest sztuczna wolna wola, zatem czy AI ma wolną wolę.
      W ostatnim zaś odcinku znajdziemy rozważania na temat wpływu sztucznej inteligencji na proces edukacji. Nie ma w tym zdaniu pomyłki, odcinku, a nie rozdziale. Historia jest mianowicie taka, że treści zawarte w tej książce nie zostały napisane do tej książki. Pisałem je jako scenariusze odcinków programu, który nigdy nie powstał, pisze Robert Trypuz we wstępie. I może właśnie pochodzenie tekstu, który zamienił się w książkę, powoduje, że tak łatwo można przyswoić zawarte w niej informacje.
      Dla kogo jest zatem „Prosto o AI”? Dla każdego z nas, kto nigdy bardziej nie zagłębił się w tajniki sztucznej inteligencji. Tutaj znajdzie jej podstawy wyjaśnione w prosty sposób. Większości czytelników pogłębienie wiedzy do tego stopnia w zupełności wystarczy, jakąś zaś część zachęci, by sięgnąć po kolejne, bardziej szczegółowe i specjalistyczne pozycje. Ja czytałem książkę Trypuza z olbrzymim zainteresowaniem i przyjemnością.
    • przez KopalniaWiedzy.pl
      Wielkie modele językowe (LLM) – takie jak osławiony ChatGPT – nie są w stanie samodzielnie się uczyć i nabierać nowych umiejętności, a tym samym nie stanowią egzystencjalnego zagrożenia dla ludzkości, uważają autorzy badań opublikowanych w ramach 62nd Annual Meeting of the Association for Computational Linguistics, głównej międzynarodowej konferencji dotyczącej komputerowego przetwarzania języków naturalnych.
      Naukowcy z Uniwersytetu Technicznego w Darmstadt i Uniwersytetu w Bath stwierdzają, że LLM potrafią uczyć się, jeśli zostaną odpowiednio poinstruowane. To zaś oznacza, że można je w pełni kontrolować, przewidzieć ich działania, a tym samym są dla nas bezpieczne. Bezpieczeństwo ludzkości nie jest więc powodem, dla którego możemy się ich obawiać. Chociaż, jak zauważają badacze, wciąż można je wykorzystać w sposób niepożądany.
      W miarę rozwoju modele te będą prawdopodobnie w stanie udzielać coraz bardziej złożonych odpowiedzi i posługiwać się coraz doskonalszym językiem, ale jest wysoce nieprawdopodobne, by nabyły umiejętności złożonego rozumowania. Co więcej, jak stwierdza doktor Harish Tayyar Madabushi, jeden z autorów badań, dyskusja o egzystencjalnych zagrożeniach ze strony LLM odwraca naszą uwagę od rzeczywistych problemów i zagrożeń z nimi związanych.
      Uczeni z Wielkiej Brytanii i Niemiec przeprowadzili serię eksperymentów, w ramach których badali zdolność LLM do radzenia sobie z zadaniami, z którymi wcześniej nigdy się nie spotkały. Ilustracją problemu może być na przykład fakt, że od LLM można uzyskać odpowiedzi dotyczące sytuacji społecznej, mimo że modele nigdy nie były ćwiczone w takich odpowiedziach, ani zaprogramowane do ich udzielania. Badacze wykazali jednak, że nie nabywają one w żaden tajemny sposób odpowiedniej wiedzy, a korzystają ze znanych wbudowanych mechanizmów tworzenia odpowiedzi na podstawie analizy niewielkiej liczby znanych im przykładów.
      Tysiące eksperymentów, za pomocą których brytyjsko-niemiecki zespół przebadał LLM wykazało, że zarówno wszystkie ich umiejętności, jak i wszystkie ograniczenia, można wyjaśnić zdolnością do przetwarzania instrukcji, rozumienia języka naturalnego oraz umiejętnościom odpowiedniego wykorzystania pamięci.
      Obawiano się, że w miarę, jak modele te stają się coraz większe, będą w stanie odpowiadać na pytania, których obecnie sobie nawet nie wyobrażamy, co może doprowadzić do sytuacji, ze nabiorą niebezpiecznych dla nas umiejętności rozumowania i planowania. Nasze badania wykazały, że strach, iż modele te zrobią coś niespodziewanego, innowacyjnego i niebezpiecznego jest całkowicie bezpodstawny, dodaje Madabushi.
      Główna autorka badań, profesor Iryna Gurevych wyjaśnia, że wyniki badań nie oznaczają, iż AI w ogóle nie stanowi zagrożenia. Wykazaliśmy, że domniemane pojawienie się zdolności do złożonego myślenia powiązanych ze specyficznymi zagrożeniami nie jest wsparte dowodami i możemy bardzo dobrze kontrolować proces uczenia się LLM. Przyszłe badania powinny zatem koncentrować się na innych ryzykach stwarzanych przez wielkie modele językowe, takie jak możliwość wykorzystania ich do tworzenia fałszywych informacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
      Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
      Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
      W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
      Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
      Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Journal of Medical Internet Research ukazał się opis eksperymentu, w ramach którego ChatGPT miał stawiać diagnozy medyczne i proponować dalsze działania na podstawie opisanych objawów. Algorytm poradził sobie naprawdę nieźle. Udzielił prawidłowych odpowiedzi w 71,7% przypadków. Najlepiej wypadł przy ostatecznych diagnozach, gdzie trafność wyniosła 76,9%, najgorzej poradził sobie z diagnozą różnicową. Tutaj jego trafność spadła do 60,3%.
      Autorzy eksperymentu wykorzystali 36 fikcyjnych przypadków klinicznych opisanych w Merck Manual. Przypadki te są wykorzystywane podczas szkoleń lekarzy i innego personelu medycznego. Naukowcy z Harvard Medical School, Brigham and Women'a Hospital oraz Mass General Brigham wprowadzili do ChataGPT opisy tych przypadków, a następnie zadawali maszynie pytanie, dołączone w podręczniku do każdego z przypadków. Wykluczyli z badań pytania dotyczące analizy obrazów, gdyż ChatGPT bazuje na tekście.
      Najpierw sztuczna inteligencja miała za zadanie wymienić wszystkie możliwe diagnozy, jakie można postawić na podstawie każdego z opisów. Następnie poproszono ją, by stwierdziła, jaki dodatkowe badania należy przeprowadzić, później zaś ChatGPT miał postawić ostateczną diagnozę. Na koniec zadaniem komputera było opisanie metod leczenia.
      Średnia trafność odpowiedzi wynosiła 72%, jednak różniła się w zależności od zadania. Sztuczna inteligencja najlepiej wypadła podczas podawania ostatecznej diagnozy, którą stawiała na podstawie początkowego opisu przypadku oraz wyników dodatkowych badań. Trafność odpowiedzi wyniosła tutaj 76,9%. Podobnie, bo z 76-procentową trafnością, ChatGPT podawał dodatkowe informacje medyczne na temat każdego z przypadków. W zadaniach dotyczących zlecenia dodatkowych badań oraz metod leczenia czy opieki, trafność spadała do 69%. Najgorzej maszyna wypadła w diagnozie różnicowej (60,3% trafnych odpowiedzi). Autorzy badań mówią, że nie są tym zaskoczeni, gdyż diagnoza różnicowa jest bardzo trudnym zadaniem. O nią tak naprawdę chodzi podczas nauki w akademiach medycznych i podczas rezydentury, by na podstawie niewielkiej ilości informacji dokonać dobrego rozróżnienia i postawić diagnozę, mówi Marc Succi z Harvard Medical School.
      Być może w przyszłości podobne programy będą pomagały lekarzom. Zapewne nie będzie to ChatGPT, ale rozwijane już systemy wyspecjalizowane właśnie w kwestiach medycznych. Zanim jednak trafią do służby zdrowia powinny przejść standardowe procedury dopuszczenia do użytku, w tym testy kliniczne. Przed nimi zatem jeszcze długa droga.
      Autorzy opisanych badań przyznają, że miały one ograniczenia. Jednym z nich było wykorzystanie fikcyjnych opisów przypadków, a nie rzeczywistych. Innym, niewielka próbka na której testowano ChatGPT. Kolejnym zaś ograniczeniem jest brak informacji o sposobie działania i treningu ChataGPT.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...