Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W DNA użytkowników e-papierosów występują podobne zmiany pronowotworowe, jak u palaczy

Rekomendowane odpowiedzi

Biologicznie istotne zmiany w DNA, obserwowane u osób palących tytoń, występują też u ludzi korzystających z e-papierosów, czytamy w piśmie Epigenetics. Naukowcy z Keck Schoold of Medicine University of Southern California, zauważyli zmiany epigenetyczne w całym genomie i w jego poszczególnych częściach.

Tego typu zmiany mogą doprowadzić do nieprawidłowego działania genów i są obecne u niemal wszystkich osób cierpiących na nowotwory, a także u zmagających się z innymi poważnymi problemami zdrowotnymi.

Badania prowadził zespół naukowy pracujący pod kierunkiem profesora Ahmada Besaratinii. Wzięły w nich udział trzy grupy osób, które dopasowano pod względem wieku, płci i rasy. Do jednej grupy trafiły osoby, które używają wyłącznie e-papierosów, do drugiej ludzie, którzy palą wyłącznie papierosy, a w grupie kontrolne byli ludzi, którzy ani nie palili papierosów, ani e-papierosów.

Od wszystkich uczestników badania pobrano krew i poszukiwano w niej dwóch czynników, o których wiadomo, że wpływają na aktywność i funkcjonowanie genów: 1) grup metylowych w specyficznej sekwencji DNA zwanej retrotranspozonem LINE1 oraz 2) grup hydroksymetylowych w całym genomie. Okazało się, że w obu grupach palaczy – zarówno używającej e-papierosów jak i tradycyjnych papierosów – doszło do znaczącego zmniejszenia poziomów obu czynników w porównaniu z grupą kontrolną.
To pierwsze badania, które wykazały, że u osób używających e-papierosów występują, podobnie jak u palaczy, tego typu zmiany w ilości takiej, że można je wykryć w badaniach krwi.

To nie oznacza, że u tych ludzi rozwinie się nowotwór, zastrzega Besaratinia. Jednak widzimy tutaj, że te same wykrywalne znaczniki, które widzimy w guzach nowotworowych są obecne też u ludzi palących papierosy i e-papierosy. Przyczyną takiego stanu rzeczy są prawdopodobnie substancje rakotwórcze obecne w dymie papierosowym oraz, w znacznie mniejszej ilości, w dymie z e-papierosów.

W ubiegłym roku ten sam zespół naukowy badał zmiany w ekspresji genów w komórkach nabłonkowych pobranych z ust takich osób i porównywano je z grupą kontrolną. Wówczas okazało się, że u osób palących papierosy i e-papierosy występuje nieprawidłowa ekspresja wielu genów powiązanych z rozwojem nowotworów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

zwykły papieros czy ten e-papieros trują tak samo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
      Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
      Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
      Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
      Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
      Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
      Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
      Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Palenie papierosów niesie ze sobą ryzyko rozwoju wielu, często śmiertelnych, chorób. Paradoksalnie jednak, jest też związane z mniejszym ryzykiem wystąpienia choroby Parkinsona. Badania niejednokrotnie wykazywały, że istnieje związek między paleniem tytoniu a zmniejszoną zapadalnością na tę chorobę neurodegeneracyjną. Dotychczas jednak nie wiedziano, dlaczego tak się dzieje. Na prawdopodobne wyjaśnienie wpadli naukowcy z Massachusetts General Hospital.
      Na łamach npj Parkinson's Disease poinformowali oni, że w badaniach laboratoryjnych niskie dawki tlenku węgla, porównywalne z dawkami wchłanianymi przez palaczy, chronią przed procesami neurodegeneracyjnymi oraz zapobiegają akumulowaniu się w mózgu kluczowej proteiny powiązanej z chorobą Parkinsona.
      Tlenek węgla jest on wytwarzany przez nasz organizm w reakcji na stres i w niskich dawkach ma działanie ochronne. Ponadto wiadomo, że zachodząca pod wpływem stresu nadmierna ekspresja enzymu oksygenazy hemowej 1 (HO-1), który wytwarza CO, chroni neurony dopaminergiczne w zwierzęcym modelu parkinsonizmu. A podczas niedawnych badań klinicznych stwierdzono, że nikotyna nie spowalnia postępów choroby Parkinsona. Dlatego też badacze skupili się właśnie na tlenku węgla.
      Stephen Gomperts, neurolog z Harvard Medical School, który pracuje w Massachusetts General Hospital, i jego zespół sprawdzili wpływ niskich dawek tlenku węgla na mysich modelach parkinsonizmu. Podawali zwierzętom tlenek węgla w postaci pigułek i stwierdzili, że chroniły one zwierzęta przed chorobą Parkinsona, w tym przed utratą neuronów dopaminergicznych i gromadzeniem się alfa-synukleiny.
      Badacze stwierdzili również, że poziom oksygenazy hemowej 1 w płynie mózgowo-rdzeniowym palaczy był wyższy, niż u osób niepalących. A w tkance mózgowej osób cierpiących na parkinsonizm poziom HO-1 był wyższy w neuronach, w których nie doszło do patologicznego nagromadzenia alfa-synukleiny.
      Odkrycie to sugeruje, że szlak molekularny aktywowany przez niskie dawki tlenku węgla mogą spowalniać i ograniczać rozwój choroby Parkinsona. Gomperts i jego zespół przygotowują się teraz do przeprowadzenia badań klinicznych na osobach cierpiących na chorobę Parkinsona. Będą im doustnie podawane niskie dawki tlenku węgla.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Okresowe głodówki niosą ze sobą wiele korzyści zdrowotnych. Opóźniają wystąpienie niektórych chorób związanych z wiekiem, przedłużają życie. W grę wchodzi tutaj wiele różnych mechanizmów. Jedne z badań prowadzonych MIT wykazały, że głodówka zwiększa możliwości regeneracyjne komórek macierzystych układu pokarmowego, które dzięki temu są w stanie likwidować stany zapalne czy uszkodzenia jelit. Autorzy najnowszych badań dokładnie opisali ten mechanizm, ale odkryli też jego ciemną stronę. Jeśli w takim okresie regeneracji dojdzie do mutacji onkogennych, u badanych myszy z większym prawdopodobieństwem rozwijały się guzy.
      Większa aktywność komórek macierzystych jest korzystna z punktu widzenia powrotu do zdrowia, ale zbyt dużo dobrego może z czasem mieć niekorzystne skutki, mówi główny autor badań, profesor Omer Yilmaz ze znajdującego się na MIT Koch Institute for Integrative Cancer Research. Uczony dodaje, że potrzebne są kolejne badania, by sprawdzić, czy takie samo zjawisko występuje również u ludzi.
      Yilmaz i jego zespół od wielu lat badają wpływ głodówek i diet niskokalorycznych na zdrowie układu pokarmowego. W 2018 roku wykazali, że podczas głodówki komórki macierzyste jelit zaczynają wykorzystywać lipidy, a nie węglowodany, jako źródła energii. Dowiedli też, że głodówka prowadzi do znacznego zwiększenia zdolności regeneracyjnych komórek macierzystych. Od tamtego czasu próbowaliśmy zrozumieć mechanizm, za pomocą którego głodówka zwiększa te zdolności. Czy chodzi o samą głodówkę czy o jedzenie po zakończeniu głodówki, wyjaśnia uczony.
      Nowe badania pokazały, że w czasie głodówki zdolności regeneracyjne komórek macierzystych są ograniczone, ale gwałtownie wzrastają w okresie po zakończeniu głodówki. Uczeni prowadzili eksperymenty na trzech grupach myszy. Pierwsza z nich głodowała przez 24 godziny, druga głodowała przez 24 godziny, a następnie mogła jeść kiedy chce, oraz trzecia, która mogła jeść kiedy chce. W czasie trwania eksperymentu prowadzono analizę zdolności do namnażania się komórek macierzystych jelit. Okazało się, że taki proces zachodził najbardziej intensywnie po zakończeniu głodówki.
      Głodówka i ponowne spożywanie pokarmów to dwa różne stany. Podczas głodówki komórki mogą przetrwać dzięki wykorzystywaniu lipidów. A regenerację napędza okres ponownego przyjmowania pokarmów po głodówce. Wówczas komórki macierzyste i komórki prekursorowe uruchamiają programy, które pozwalają im namnażanie się i ponowne zasiedlanie wyściółki jelit, wyjaśnia doktor Shinya Imada. Badacze dowiedzieli się, że komórki aktywują wówczas szlak sygnałowy mTOR, który zaangażowany jest w procesy wzrostu i metabolizmu komórek. Jedną z ról mTOR jest translacja mRNA w białka, więc po aktywacji, komórka produkuje więcej białka, a jego synteza jest niezbędna do rozprzestrzeniania się. Uczeni wykazali też, że aktywacja mTOR w komórkach macierzystych prowadzi też do bardzo dużej produkcji poliamin, niewielkich molekuł pomagających komórkom we wzroście i podziale.
      Okazało się jednak, że gdy komórki macierzyste znajdują się stanie, w którym zdolne są do tak intensywnej regeneracji, są bardziej podatne na mutacje onkogenne. Komórki macierzyste jelit należą do najbardziej aktywnie dzielących się komórek w naszych organizmach. Dzięki nim szybko dochodzi do wymiany wyściółki jelit. Jednak, jako że dzielą się tak często, są głównym źródłem komórek przedrakowych. Autorzy badań zauważyli, że gdy u myszy, które zaczęły jeść po głodówce, uruchomią gen powodujący nowotwór, zwierzęta takie z większym prawdopodobieństwem rozwiną przedrakowe polityp niż w sytuacji, gdy gen zostanie uruchomiony w czasie głodówki czy u zwierząt, które nie głodowały.
      Chcę podkreślić, że to badania na myszach, w których użyliśmy konkretnej mutacji. U ludzi będzie to bardziej skomplikowane. Z badań możemy jednak wyciągnąć następujący wniosek: głodówka jest bardzo zdrowa, jeśli jednak masz pecha i w momencie, gdy kończysz głodówkę komórki twoich jelit zostaną wystawione na działanie mutagenu – na przykład na przypalony stek – może dojść do zwiększenia ryzyka pojawienia się nieprawidłowości, która da początek nowotworowi, wyjaśnia Yilmaz.
      Uczony stwierdził też, że głodówka może przynieść bardzo dużo korzyści osobom, które przechodzą uszkadzającą jelita radioterapię. Obecnie wraz z zespołem bada, czy podobnych korzyści nie można odnieść bez głodówki, przyjmując suplementy poliamin.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Historia Kaspara Hausera, zwanego „sierotą Europy”, rozpalała w XIX wieku wyobraźnię całej Europy. Ten niezwykle zagadkowy mężczyzna, jego tajemnicze życie i śmierć od dwóch wieków są inspiracją dla artystów. O pochodzeniu Kaspara nie wiadomo nic pewnego, mimo że jego postać to jedna z najgłośniejszych tajemnic XIX wieku. Popularna teoria głosi, że był synem księcia Badenii, który jako dziecko został podmieniony i przetrzymywany w izolacji, by wprowadzić na tron boczną linię rodziny książęcej. Na łamach iScience opisano właśnie wyniki badań materiału genetycznego Kaspara.
      W maju 1828 roku na ulicach Norymbergi pojawił się młody nędznie ubrany w podartych butach i z poranionymi stopami. Kontakt z nim był bardzo trudny. Zainteresował się nim lokalny szewc. Przy chłopaku znaleziono dwa listy. Jeden adresowany był do rotmistrza Fryderyka von Wesseninga, dowódcy szwadronu szwoleżerów. Ich autor stwierdzał, że jest ubogim parobkiem i zajmował się chłopakiem od 1812 roku, gdy ten, jako niemowlę, został oddany mu pod opiekę. Chłopak miał umieć czytać i pisać, ale ponoć rzadko wychodził z domu. Autor prosi Wesseninga, by przyjął chłopca do wojska lub go zabił.
      Wessening nie chciał mieć ze znajdą nic wspólnego, więc ten trafił na policję. Tam znaleziono przy nim drugi list, napisany rzekomo przed 16 laty przez matkę chłopca. Była tam informacja, że chłopiec nazywa się Kaspar, a jego matka pisze, że nie może się nim opiekować i prosi, by w wieku 17 lat oddać go od regimentu, w którym służył jego ojciec.
      Cała sprawa od początku była podejrzana. Widać było, że oba listy napisała ta sama osoba, tym samym atramentem na papierze pochodzącym z tej samej wytwórni. Charakter pisma i styl wypowiedzi nie pasowały też do osoby z niskich klas społecznych.
      Chłopak powtarzał tylko, że chce być kawalerzystą, jak jego ojciec. Policjanci dali mu papier, na którym ten napisał „Kaspar hauser”. Stał się więc znany pod takim nazwiskiem.
      Znajda przez jakiś czas był przetrzymywany w areszcie. Miał tam zachowywać się jak niedorozwinięte dziecko, jadł tylko chleb i wodę. Stało się o nim głośno, odwiedzały go wycieczki ciekawskich. Po kilku tygodniach zamieszkał z rodziną strażnika więziennego. Był okazem zdrowia, blada skóra wskazywała na brak kontaktu ze słońcem. Badający go lekarz stwierdził, że chłopiec jest dzikim dzieckiem, które wychowywano w izolacji od ludzi.
      Kaspar budził zaciekawienie gawiedzi. Wszystko zmieniło się, gdy ktoś dopatrzył się jego podobieństwa do zmarłego przed laty księcia Badenii Karola Ludwika. Pierworodny syn księcia zmarł jako niemowlę w 1812 roku. To zgadzało się z rokiem urodzenia Kaspara zawartym w liście od rzekomej matki. W czasie, gdy w Norymberdze pojawił się Hauser, na tronie Badenii zasiadał wujek Karola Ludwika, ostatni męski przedstawiciel tej samej linii rodu. Ludwik I był bezdzietny, a po jego śmierci tron miał objąć syn Karola Fryderyka, który z powodu mezaliansu popełnionego przez ojca, został wyłączony z sukcesji.
      Śmierć dziecka Karola Ludwika była więc na rękę tej gałęzi rodziny, z której pochodził Karol Fryderyk. Pojawiły się pogłoski, że to żona Karola Fryderyka stała za podmienieniem syna Karola Ludwika na martwe niemowlę. I oto prawdziwy następca tronu, w osobie Kaspara Hausera, pojawił się na ulicach Norymbergi. Oliwy do ognia dolewały pogłoski o porwanym księciu, które od dawna krążyły w Niemczech.
      Kaspar Hauser wkroczył więc w świat polityki. Nagle zaczął nadrabiać opóźnienia intelektualne, spisywał wspomnienia ze swojego uwięzienia w ciemnej piwnicy. Jego historia stawała się coraz bardziej podejrzana. Gdy zainteresowanie nim przygasło, znaleziono go w piwnicy z raną ciętą głowy. Miał zostać zaatakowany przez nieznanego napastnika. Dzieje Kaspara są pełne zwrotów akcji i niezwykle podejrzane. Kilka lat później doszło do kolejnego – rzekomego a może i nie – zamachu na jego życie. Trzy dni później Kaspar Hauser zmarł i wciąż pozostaje tajemnicą.
      Tajemnicę tę próbuje się rozwiązać od 200 lat. Już w 1996 roku przeprowadzono pierwsze badania genetyczne i stwierdzono, że Kaspar nie był powiązany z domem panującym w Badenii. Jednak sposób przeprowadzenia badań – wykorzystanie tylko 1 próbki – został skrytykowany przez ekspertów. Od tamtej pory prowadzono liczne badania genetyczne. Dawały one sprzeczne wyniki, a autentyczność niektórych próbek była kwestionowana.
      Teraz rozwiązanie zagadki Kaspara Hausera wziął się niemiecko-austriacki zespół naukowy, w którego pracach wzięła udział profesor Turi King. To ona przed 10 laty zidentyfikowała pochowane pod parkingiem szczątki Ryszarda III, jedynego króla Anglii, którego miejsce pochówku pozostawało nieznane. Badacze wykorzystali nowoczesne metody analityczne oraz różne próbki przypisywane Kasparowi Hauserowi. Były to włosy Kaspara z czasów gdy żył oraz zachowane po jego śmierci oraz krew mężczyzny pobrana z jego ubrań przechowywanych w poświęconym mu muzeum. Upewnili się, że mitochondrialne DNA próbek było identyczne i w ten sposób – po raz pierwszy – udowodnili ich autentyczność. Jednocześnie dowiedli, że mDNA jest wyraźnie różne od mDNA rodu Baden. Tym samym obalili hipotezę, jako Kaspar Hauser pochodził z linii książęcej.
      Pracowałam nad dwoma przypadkami identyfikacji osób potencjalnie pochodzących z rodów królewskich: Ryszarda III i Kaspara Hausera. W pierwszym z tych przypadków okazało się, że mamy do czynienia z królem. W drugim udowodniliśmy, że to nie książę, mówi profesor King. Uczona dodaje, że wciąż nie wiadomo, kim był Kaspar Hauser. Jego mDNA wskazuje na pochodzenie z zachodniej części Eurazji. Jednak dokładniejszego regionu geograficznego nie udało się ustalić.
      Kaspar Hauser wciąż pozostaje więc tajemnicą.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
      Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
      Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
      W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
      Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
      Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...