Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

CHEOPS wystartował, a wraz z nim OPS-SAT, przy którym pracowali polscy naukowcy

Rekomendowane odpowiedzi

CHEOPS, pierwszy europejski satelita, którego wyłączonym celem jest badanie planet pozasłonecznych, wystartował przed trzema godzinami z kosmodromu Kourou w Gujanie Francuskiej. W przeciwieństwie do innych tego typu misji CHEOPS (Characterising Exoplanet Satellite) nie będzie szukał nowych planet, ale badał te już znalezione.

Zadaniem CHEOPSA będzie scharakteryzowanie planet wielkości od Neptuna do Ziemi.

1. Satelita będzie rejestrował przejścia planet na tle tych gwiazd, o których wiemy, że posiadają układ planetarny. Stosunek sygnału do szumu rejestrowany przez CHEOPSa będzie wynosił 5:1 dla planet wielkości Ziemi o okresie obiegu 50 dni krążących wokół żółtych karłów typu GV (to gwiazdy typu Słońca) o obserwowanej jasności gwiazdowej jaśniejszej od 9. Taki stosunek sygnału do szumu dla tych gwiazd jest wystarczający, by stwierdzić, czy planeta posiada znaczącą atmosferę. CHEOPS powinien więc znaleźć najbardziej obiecujące obiekty badań dla urządzeń wyposażonych w spektroskopy, takich jak Teleskop Kosmiczny Jamesa Webba.

2. Urządzenie ma dostarczyć precyzyjnych pomiarów średnicy gorących Neptunów krążących wokół gwiazd o magnitudo większym niż 12 i poszukać powiązanych z nimi mniejszych planet. W tym przypadku będą badane pomarańczowe karły (typ K) oraz czerwone karły (typ M). Tutaj czułość CHEOPSA jest większa, a stosunek sygnału do szumu wynosi 30:1, dzięki czemu satelita uściśli pomiary dotyczące rozmiarów planet, a margines błędu nie przekroczy 10%. To pozwoli lepiej opisać strukturę fizyczną gorących Neptunów. Ponadto naukowcy są niemal pewni, że CHEOPS wykryje wokół wspomnianych gwiazd mniejsze planety, których dotychczas nie znamy. Z wcześniejszych obserwacji Teleskopu Keplera wynika bowiem, że około 1/3 gorących Neptunów ma mniejszych towarzyszy. CHEOPS idealnie nadaje się do ich zarejestrowania.

3. Ostatnim zadaniem CHEOPSa będzie zbadanie modulacji fazy docierających sygnałów związanej z różnicą temperatur pomiędzy dzienną a nocną stroną planety. Badanie takie pozwoli określić przepływy energii w atmosferze.

CHEOPS nie jest jedynym urządzeniem, którego misja rozpoczęła się wraz z dzisiejszym startem z Kourou. Na pokładzie rakiety znajdował się też satelita OPS-SAT, w którego tworzeniu udział miała polska firma Creotech Instruments. To niewielkie, ważące 6 kilogramów urządzenie ma na swoim pokładzie komputer 10-krotnie potężniejszy niż jakikolwiek inny satelita Europejskiej Agencji Kosmicznej.

OPS-SAT będzie służył jako laboratorium do testowania pokładowych systemów satelitarnych i technik kontroli misji. Misja jest wyjątkowa, ponieważ jest odpowiedzią na rzeczywistą potrzebę przemysłu kosmicznego, który z jednej strony musi doskonalić swoje procedury i podnosić efektywność misji, a z drugiej, z uwagi na koszty produkcji satelitów i wyniesienia ich na orbitę, nie może ryzykować niepowodzeniem misji przez oparcie ich na eksperymentalnych, nieprzetestowanych w warunkach kosmicznych rozwiązaniach – stwierdził Jacek Kosiec, Prezes Creotech Instruments S.A., spółki która wraz z polskimi partnerami: Centrum Badań Kosmicznych PAN i firmą GMV Polska, odpowiadała za około 1/3 prac projektowych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czy jest jakakolwiek szansa na to żeby badać albedo egzoplanety?
Wyobrażam sobie długie obserwacje znanych egzoplanet, z okresami nałożonymi na siebie i uśrednionymi. Takie uśrednianie powinno chyba dać bardzo silne ograniczenie szumów i przypadkowych zmian, a w efekcie być może po "przeciwległej" stronie pojawił by się szeroki, niewielki wzrost jasności. Z tego wzrostu można by było odczytać np. kolor planety.
Ktoś się orientuje że technicznie było by to w ogóle wykonalne?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy doszło do nieudanego wystrzelenia satelitów z konstelacji Starlink. W wyniku awarii satelity znalazły się na bardzo niskiej orbicie i wkrótce spłoną w atmosferze. Firma SpaceX zapewnia, że nie stanowią one zagrożenia. Pierwsze Starlinki trafiły na orbitę w 2019 roku. Obecnie konstelacja składa się z ponad 6000 niewielkich satelitów znajdujących się na niskiej orbicie okołoziemskiej (LEO).
      Dwadzieścia satelitów Starlink zostało wystrzelonych przed 4 dniami na pokładzie rakiety Falcon 9 z Vandenberg Space Force Base. Pierwszy stopień rakiety spisał się bez zarzutu, wynosząc na orbitę drugi stopień i satelity. Następnie oddzielił się od nich i z powodzeniem wylądował. Było to już 329. udane lądowanie rakiety nośnej przeprowadzone przez SpaceX.
      Pierwsze uruchomienie silników 2. stopnia przebiegło zgodnie z planem, jednak pojawił się wyciek ciekłego tlenu. W związku z tym silnik Merlin, który miał wynieść satelity na prawidłową orbitę, nie spełnił swojego zadania.
      Co prawda satelity zostały prawidłowo zwolnione, ale znajdują się na orbicie o dużym mimośrodzie, która w najniższym punkcie znajduje się zaledwie 135 kilometrów nad Ziemią. To ponaddwukrotnie niżej, niż powinny się znaleźć. Na tej wysokości pojazdy doświadczają znacznego tarcia o atmosferę, przez co z każdym obiegiem tracą 5 kilometrów wysokości w apogeum (najwyższym punkcie orbity). Oddziaływanie atmosfery na satelity jest tak silne, że ich silniki nie poradzą sobie z wyniesieniem pojazdów na prawidłową orbitę. Dlatego wkrótce satelity wejdą w atmosferę i w niej spłoną.
      SpaceX oświadczyła, że nie zagrażają one ani innym satelitom, ani ludziom na Ziemi. To przypomina nam, jak wymagające technicznie są loty w kosmos. Dotychczas przeprowadziliśmy 364 udane starty rakiet Falcon – które bezpiecznie dostarczały astronautów, ładunki i tysiące satelitów Starlink na orbitę – co czyni z rodziny Falcon jedną z najlepszych serii rakiet nośnych w historii, czytamy w firmowym oświadczeniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
      O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
      Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
      Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
      Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
      Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
      Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy czekają na uruchomienie Vera C. Rubin Observatory, obserwatorium astronomicznego, którego budowa dobiega końca w Chile. Na jego potrzeby powstał najpotężniejszy aparat fotograficzny na świecie. Obserwatorium ma co trzy tygodnie wykonywać fotografie całego nieboskłonu. Jego główny program badawczy – Legacy Survey of Space and Time – zakłada utworzenie mapy Drogi Mlecznej, dokonanie spisu obiektów w Układzie Słonecznym czy zbadanie niewyjaśnionych sygnałów dobiegających z głębi wszechświata. Jednak obserwatorium może nigdy nie spełnić pokładanych w nim nadziei.

      Niedawno opublikowane raporty przygotowane przez zespół obserwatorium, a także amerykańskie Government Accountability Office – odpowiednik polskiej NIK – rysują przyszłość astronomii w ciemnych barwach. Konstelacje sztucznych satelitów, których panele słoneczne i anteny odbijają światło, mogą praktycznie uniemożliwić naziemne badania astronomiczne w świetle widzialnym. Niemożliwe mogą stać się badania kolizji czarnych dziur czy obserwacje asteroid bliskich Ziemi. Specjaliści ostrzegają, że mamy ostatnią możliwość, by temu zapobiec.
      Obecnie na orbicie okołoziemskiej znajduje się ponad 5400 satelitów. Większość z nich, umieszczona na niskich orbitach, okrąża Ziemię w ciągu około 1,5 godziny. Od czasu, gdy w 2019 roku firma SpaceX wystrzeliła swoją pierwszą grupę pojazdów i rozpoczęła budowę konstelacji Starlink, liczba sztucznych satelitów szybko rośnie, a będzie rosła jeszcze szybciej, gdyż dołączają kolejne przedsiębiorstwa. Z danych amerykańskiej Federalnej Komisji Komunikacji oraz Międzynarodowej Unii Telekomunikacji wynika, że tylko do tych dwóch organizacji wpłynęły wnioski o zezwolenie na wystrzelenie w najbliższych latach 431 713 satelitów, które będą tworzyły 16 konstelacji.
      Jeśli nad naszymi głowami będzie krążyło 400 000 satelitów, to będą one widoczne na każdym zdjęciu wykonanym w ramach badań astronomicznych. I nawet jeśli udałoby się automatycznie usunąć je z fotografii, to przy okazji utracona zostanie olbrzymia liczba informacji. Wyeliminowanie takich satelitów z obrazów będzie jednak bardzo trudne, między innymi dlatego, że będą się one poruszały w różny sposób i w różny sposób wyglądały w zależności od stosowanych filtrów kolorów. Eksperci, którzy pracują nad systemem wysyłającym automatyczne alerty do społeczności astronomów, gdyby Vera C. Rubin Observatory odkryło coś nowego – np. supernową – na nieboskłonie, obliczają, że konstelacje satelitów mogą doprowadzić do pojawienia się... 10 milionów fałszywych alertów na dobę. To pokazuje, jak ważne jest usuwania satelitów ze zdjęć. Nie wiadomo jednak, czy uda się uniknąć wszystkich takich fałszywych alertów, jak wiele informacji zostanie przy okazji utraconych i ile interesujących obiektów pozostanie przez to niezauważonych.
      Konstelacje sztucznych satelitów mogą też znacznie utrudnić obserwację asteroid bliskich Ziemi. Dotychczas było wiadomo, że najlepszym momentem do ich wyszukiwania jest zmierzch. Jednak o zmierzchu panele słoneczne satelitów będą dobrze oświetlone, zaburzając możliwość obserwacji.
      Problem narasta. We wrześniu ubiegłego roku firma AST SpaceMobile wystrzeliła swojego prototypowego satelitę o nazwie BlueWalker3. Gdy dwa miesiące później rozwinął on anteny o powierzchni ponad 64 metrów kwadratowych, stał się jednym z najjaśniejszych obiektów na niebie. Jaśniejszym niż 99% gwiazd widocznych gołym okiem. A to dopiero początek. AST SpaceMobile chce w najbliższych latach wystrzelić 168 jeszcze większych satelitów.
      Obok pytania o wpływ konstelacji satelitów na badania naukowe rodzi się też pytanie o kwestie kulturowe czy filozoficzne. Czy kilka wielkich koncernów ma prawo kontrolować to, co ludzie widzą na nocnym niebie. Czy niebo, które przez wieki wpływało na literaturę, malarstwo, filozofię może zostać de facto sprywatyzowane przez kilka przedsiębiorstw liczących na kolosalne zyski. Istnieje bowiem poważne niebezpieczeństwo, że już za kilka lat, chcąc spojrzeć w rozgwieżdżone niebo, zobaczymy na nim więcej odbijających światło słoneczne sztucznych satelitów niż gwiazd. I nie będzie miało znaczenia, w którym miejscu Ziemi będziemy mieszkali.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba po raz pierwszy został użyty do potwierdzenia istnienia egzoplanety, planety obiegającej inną gwiazdę niż Słońce. Planeta LHS 475 b jest niemal identycznej wielkości, co Ziemia. Jej średnica wynosi 99% średnicy naszej planety.
      Kevin Stevenson i Jacob Lustig-Yaeger z Applied Physics Laboratory Uniwersytetu Johnsa Hopkinsa postanowili wykorzystać Webba do potwierdzenia istnienia planety pozasłonecznej. Starannie wybrali cel swoich obserwacji i po zaledwie dwóch tranzytach, wykorzystując zamontowany na Webbie NIRSpec (Near-Infrared Spectrograph) byli w stanie potwierdzić, że wytypowany obiekt to rzeczywiście planeta. Nie ma co do tego wątpliwości. Dane z Webba to potwierdzają. Fakt, że to mała skalista planeta tylko pokazuje możliwości obserwatorium, stwierdził Stevenson.
      Eksperci zauważają, że tak jednoznaczne i dobrej jakości dane przekazane przez Teleskop Webba, a dotyczące skalistej planety wielkości Ziemi to kolejny dowód, że Teleskop otwiera przed nauką zupełnie nowe możliwości w dziedzinie badania atmosfer egzoplanet. Webb przybliża nas do lepszego zrozumienia planet podobnych do Ziemi, znajdujących się poza Układem Słonecznym. A jego misja dopiero się rozpoczęła, powiedział Mark Clampin, dyrektor Wydziału Astrofizyki w NASA.
      Webb to jedyny teleskop zdolny do badania atmosfer egzoplanet wielkości Ziemi.
      Naukowcy próbują teraz zbadać atmosferę LHS 475 b. Na razie nie wiedzą, czy w ogóle ma ona atmosferę. Jednak dzięki danym z Webba już są w stanie wykluczyć różne rodzaje atmosfer. Wiadomo, że planeta nie ma na przykład gęstej zdominowanej przez metan atmosfery, jak księżyc Saturna Tytan. Możliwe, że w ogóle nie ma atmosfery lub też jej atmosfera składa się np. wyłącznie z dwutlenku węgla. Na razie Webb dostarczył zbyt małej ilości danych. Pozwolił natomiast stwierdzić, że powierzchnia planety jest o kilkaset stopni cieplejsza, niż powierzchnia Ziemi. Jeśli wykryjemy chmury, będzie można przypuszczać, że LHS 475 b jest podobna do Wenus.
      Wiemy również, że planeta obiega swoją gwiazdę w ciągu zaledwie dwóch dni. Jest więc bliżej gwiazdy, niż Merkury Słońca, jednak jej gwiazda to czerwony karzeł dwukrotnie chłodniejszy od Słońca, zatem naukowcy spodziewają się, że mimo niewielkiej odległości od gwiazdy planeta może posiadać atmosferę.
      Badana planeta znajduje się dość blisko, w odległości 41 lat świetlnych od Ziemi, w Gwiazdozbiorze Oktanta.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
      Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
      Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
      Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
      Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
      Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
      WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
      Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
      Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
      Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
      Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
      Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...