Przepływy fal magnetycznych od teraz pod lepszą kontrolą
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Jagiellońskiego stworzyli kwantowy nanomagnes o wyjątkowych właściwościach. To krok w kierunku nowych rodzajów komputerowych pamięci i procesorów.
Zespół Uniwersytetu Jagiellońskiego pod kierunkiem dr. hab. Dawida Pinkowicza, na łamach prestiżowego pisma „Nature Communications” opisał unikalną cząsteczkę – nowego typu metaloorganiczny nanomagnes kwantowy.
Nanomagnesy badane są już od lad 90, ale polski zespół stworzył strukturę, która w skali nano przypomina te, jakie stosuje się w zwykłych, dużych magnesach. W nowej cząsteczce centralny jon magnetyczny otoczony jest wyłącznie przez inne jony metali. Molekuła składa się bowiem z centralnego jonu erbu (metal ziem rzadkich), który łączy się z trzema ciężkimi jonami renu (metal przejściowy). To pozwala zbliżyć się do cenionych właściwości, jakie wykazują duże, makroskopowe magnesy.
Choć praktyczne zastosowania molekularnych magnesów raczej nie pojawią się w najbliższej przyszłości, to w dłuższej perspektywie takie badania mogą odmienić kluczowe dla cywilizacji dziedziny, np. informatykę.
W pierwszej kolejności nanomagnesy kwantowe mają szansę zastąpić dotychczas stosowane materiały magnetyczne tam, gdzie już osiągnęły one granicę swoich możliwości. Tak jest właśnie w przypadku magnetycznych dysków twardych. Ich dalszy rozwój jest już ograniczony przez same prawa fizyki, które nie pozwalają na dalszą miniaturyzację domen magnetycznych stanowiących podstawową jednostkę pamięci - wyjaśnia mgr Michał Magott, członek grupy badawczej.
W dalszej kolejności nanomagnesy mają szansę na zastosowanie w konstrukcji tranzystorów, a właściwie spintronicznych tranzystorów, które mogą w przyszłości zastąpić tradycyjne tranzystory w układach elektronicznych, a do ich konstrukcji potrzebne jest właśnie źródło magnetyzmu naszych nanomagnesów, czyli spin elektronu – dodaje.
Jednym z kluczowych zadań, przed którymi stoją projektanci nanomagesów, jest uzyskanie takich struktur, które będą działały w temperaturze pokojowej. Obecnie wymagają one zwykle silnego chłodzenia, co utrudnia lub wręcz uniemożliwia praktyczne zastosowania. Dopiero w 2020 r. jedna z grup zajmujących się tym tematem uzyskała molekularny magnes, który działa w temperaturze ok. minus 30 stopni. To ogromny sukces.
Mamy nadzieję, że nasze odkrycie zadziała w podobny sposób - zaproponowaliśmy zupełnie nową strategię syntezy molekularnych nanomagnesów, która umożliwia otrzymanie cząsteczek, naśladujących struktury stosowanych przemysłowo magnesów metalicznych. Liczymy na to, że właśnie ta nowa ścieżka syntetyczna będzie potrzebną zmianą strategii, która umożliwi otrzymanie wysokotemperaturowych molekularnych nanomagnesów – mówi mgr Magott.
Badacza i jego kolegów czekają teraz dalsze, żmudne badania.
Na razie udało nam się pokazać, że ta nowa strategia syntetyczna jest skuteczna i pozwala na otrzymanie świetnego nanomagnesu. Teraz trzeba przeprowadzić setki (może nawet tysiące) prób z wykorzystaniem tego nowego podejścia, aż uda się otrzymać taki nanomagnes, który nada się do zastosowań praktycznych – podkreśla naukowiec.
Badania nad nanomagnesem ErRe 3 zostały sfinansowane przez Narodowe Centrum Nauki w ramach projektu Sonata Bis 6.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Główny autor badań, Maciej Dąbrowski z University of Exeter mówi, że uzyskane przez nas eksperymentalne potwierdzenie istnienie mechanizmu przemijających fal spinowych pokazuje, że transfer momentu pędu pomiędzy spinami a strukturą krystaliczną antyferromagnetyka można uzyskać w cienkowarstwowym NiO. To otwiera drogę do zbudowania nanoskalowych wzmacniaczy prądu spinowego.
Doktor Dąbrowski jest głównym autorem opublikowanego na łamach Physical Review Letters artykułu, którego autorzy informują o dokonaniu przełomu w dziedzinie spintroniki. Przełomu, który może doprowadzić do powstania energooszczędnych, niezwykle wydajnych urządzeń elektronicznych.
Obecnie technologie informacyjne opierają się na elektronice. Do przechowywania i przenoszenia danych wykorzystujemy ładunek elektronu. Intensywnie jednak rozwija się spintronika, która do tych samych zadań wykorzystuje nie ładunek, a spin elektronu. Przed trzema laty informowaliśmy, że naukowcy z Instytutu Fizyki PAN badają możliwość przenoszenia informacji przez fale spinowe. Wyobraźmy sobie materiał magnetyczny, w którym wszystkie spiny są jednakowo ukierunkowane. Jeśli odchylę jeden spin, to będzie próbował on wrócić do swojego punktu równowagi. Jednak jego ruch wychwyci już spin sąsiedniego elektronu i on również się wychyli. Przez wzajemne oddziaływanie między spinami to wychylenie – czyli zaburzone lokalnie namagnesowanie – będzie się rozchodziło w materiale, przyjmując formę fali. To właśnie nazywamy falą spinową, tłumaczyła wówczas doktor Ewa Milińska.
Teraz naukowcy z Uniwersytetów w Exeter, Oksfordzie, Berkeley oraz uczeni z Advanced Light Source i Diamond Light Source dowiedli eksperymentalnie, że zmienne prądy spinowe o wysokiej częstotliwości mogą być przesyłane i wzmacniane w cienkiej warstwie tlenku niklu (NiO). Eksperymenty wykazały, że prąd spinowy w cienkowarstwowym NiO jest propagowany przez krótkotrwałe fale spinowe. Mamy tutaj do czynienia ze zjawiskiem podobnym do tunelowania kwantowego.
Zjawisko to zachodzi w temperaturze pokojowej i odbywa się przy częstotliwościach liczonych w gigahercach, dzięki czemu w przyszłości można je będzie wykorzystać do energooszczędnego i szybkiego przekazywania danych.
Tymczasem naukowcy już myślą o udoskonalaniu spintroniki. W Instytucie Fizyki Jądrowej PAN trwają prace nad raczkującą dopiero magnoniką.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badacze z Uniwersytetu Johnsa Hopkinsa odkryli, że na każdy 1 punkt procentowy zwiększenia powierzchni zabetonowanych – jak drogi, parkingi, budynki i inna infrastruktura – przypada 3,3-procentowe zwiększenie intensywności powodzi. Oznacza to, że jeśli w basenie danej rzeki zabetonowaną powierzchnię zwiększymy o 10%, to średnio przepływ wody w czasie zwiększy się tam o 33%.
W ostatnim czasie doszło do znaczne zwiększenia intensywności powodzi w takich miastach jak Houston czy Ellicott City. Chcieliśmy lepiej zrozumieć, jak urbanizacja wpływa na zwiększenie przepływu wód powodziowych, mówi Annalise Blum z Johns Hopkins University i American Association for the Advancement of Science.
Poprzednie badania tego typu wykorzystywały mniejsze zestawy danych, dotyczących pojedynczych cieków wodnych lub niewielkich grup cieków w określonym przedziale czasowym. Nie można było ich przełożyć na skalę całego kraju. Ponadto trudno było na ich podstawie wyizolować przyczynę i skutek, gdyż nie kontrolowano w nich efektywnie wpływu takich czynników jak klimat, zapory wodne czy sposób wykorzystywania terenu. Trudno było więc podać konkretne wartości pokazujące, w jaki sposób nieprzepuszczalna powierzchnia wpływa na powodzie.
Blum we współpracy z profesorem Paulem Ferraro wykorzystali modele matematyczne, które rzadko są używane do badania powodzi. W badaniach środowiska naturalnego trudno jest oddzielić przyczynę od skutku. Na szczęście w ciągu ostatnich dekad na polu ekonomii i biostatystyki opracowano metody, które pozwalają na ich odróżnienie. Zastosowaliśmy te metody do badań hydrologicznych, w nadziei, że przyczyni się to do postępu w tej dziedzinie wiedzy i da planistom oraz polityko nowe narzędzia pomocne podczas rozwoju miast, stwierdza Ferrero.
Naukowcy wykorzystali dane US Geological Survey z okresu 1974–2012, które dotyczyły ponad 2000 cieków wodnych. Dane zawierały informacje o przepływie wody. Informacje takie poddano analizie, w której uwzględniono też zmiany w obszarze powierzchni nieprzepuszczalnych w basenie każdego z cieków.
Z analizy wynika, że wielkość powodzi, rozumiana jako maksymalny przepływ wody, zwiększa się o 3,3 punktu procentowego dla każdego wzrostu obszaru powierzchni nieprzepuszczalnych o 1 pp.
"W związku z olbrzymią coroczną zmiennością przepływu wody trudno jest wydzielić skutki urbanizacji. Nam się to udało dzięki zastosowaniu olbrzymich zestawów danych zbieranych zarówno w czasie jak i w przestrzeni", wyjaśnia Blum.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Proste ćwiczenia nóg mogą zmniejszyć wpływ siedzącego trybu życia na serce i naczynia krwionośne.
Wcześniejsze badania pokazały, że przedłużone siedzenie do 6 godzin powoduje spadek dopływu krwi do kończyn oraz zdolności większych naczyń do rozszerzania się w ramach przystosowywania do zwiększonego przepływu krwi.
Badanie, którego wyniki ukazały się w piśmie Experimental Physiology, jako pierwsze wykazało, że wystarczy 10 min siedzenia, by zredukować dopływ krwi do nóg i by upośledzić działanie drobnych naczyń zaopatrujących mięśnie nóg.
Oprócz tego zespół Jennifer R. Vranish z Wydziału Kinezjologii Uniwersytetu Teksańskiego w Arlington zauważył, że drobne naczynia działają gorzej także w czasie leżenia.
Studium pokazuje, że pogorszeniu funkcji można jednak przeciwdziałać, wykonując podczas leżenia w łóżku czy na kanapie proste ćwiczenia.
Podczas testów wykonywano ultrasonografię dopplerowską m.in. tętnicy podkolanowej 18 młodych zdrowych mężczyzn; przekrwienie reaktywne oraz rozszerzalność tętnicy pod wpływem zwiększonego przepływu oceniano przed i po 10 min siedzenia, a także w czasie leżenia, gdy wykonywano ćwiczenia nóg lub nie. Ćwiczenia polegały na wyciąganiu stopy w przód i w tył co 2 sekundy przez 1/3 czasu spędzonego na leżeniu.
Okazało się, że 10-min siedzenie nie wpływało co prawda na funkcjonowanie makronaczyniowe, ale ograniczało zdolność szybkiego zwiększania dopływu krwi do podudzia za pośrednictwem drobnych naczyń. To sugeruje, że krótki okres nieaktywności wpływa na zdolność szybkiego dostarczenia krwi do podudzia, lecz nie oddziałuje na rozszerzalność tętnicy pod wpływem zwiększonego przepływu. Wyniki sugerują także, że ćwiczenia nóg mogą pomóc w zachowaniu szybkich wzrostów dopływu krwi do kończyn.
Naukowcy podkreślają, że ich badania mają pewne ograniczenia. Przez to, że badano wyłącznie młodych zdrowych mężczyzn, wyników nie można rozszerzać na kobiety. Nie wiadomo także, jak te reakcje zmieniają się w zależności od wieku i u ludzi, którzy mają choroby sercowo-naczyniowe. Dalsze badania powinny również pokazać, jak siedzenie i brak aktywności oddziałują na inne części ciała (poza kolanem). Zespół chciałby się np. dowiedzieć, czy siedzenie oddziałuje na funkcje naczyń zaopatrujących mózg. Potrzeba też eksperymentów, które ocenią wpływ powtarzanych krótkich "rzutów" siedzenia.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.