Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

DESI stworzy trójwymiarową mapę galaktyk i rozkładu ciemnej energii we wszechświecie

Recommended Posts

Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian.

Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy.

DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji.

DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych.

Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawe, czy rzeczywiście da się na odległość ustalić taką masę ciemnej energii na takim obszarze i (czego tutaj nie powiedziano) gdzie właściwie ten teleskop zostanie ustawiony. Na księżycu?

Share this post


Link to post
Share on other sites

@rozan może jednak lepiej czytaj artykuł przed pisaniem. :)

W dniu 12.11.2019 o 12:47, KopalniaWiedzy.pl napisał:

Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Losy wszechświata zależą od równowagi pomiędzy ciemną energią, a materią. Dark Energy Spectroscopic Instrument (DESI), zamontowany na Kitt Peak w Arizonie działa od 2021 roku i zebrał dane o milionach galaktyk i kwazarów, dzięki czemu powstała największa trójwymiarowa mapa wszechświata. Gdy zaś naukowcy połączyli dane z DESI z danymi uzyskanymi z innych instrumentów, pojawiły się wskazówki, że ciemna energia – o której sądzono, że jest stałą kosmologiczną – ewoluuje w niespodziewany sposób i słabnie z czasem. A to oznacza, że standardowy model kosmologiczny może wymagać aktualizacji.
      DESI to międzynarodowy eksperyment zarządzany przez Lawrence Berkeley National Laboratory (LBNL). Zaangażowanych weń jest ponad 900 naukowców z ponad 70 instytucji badawczych na całym świecie. To co widzimy, jest niezwykle intrygujące. Bardzo ekscytująca jest świadomość, że możemy być o krok od wielkiego odkrycia dotyczącego ciemnej energii i natury wszechświata, mówi profesor Alexie Leauthaud-Harnett, rzecznik prasowa DESI.
      Same w sobie dane z DESI są zgodne z najpowszechniej uznawanym modelem wszechświata Lambda-CDM (ΛCDM), gdzie Λ to ciemna energia będącą tutaj stałą kosmologiczną, a CDM to zimna ciemna materia. Jeśli jednak połączy się te dane z wynikami badań mikrofalowego promieniowania tła (CMB), supernowych oraz słabego soczewkowania grawitacyjnego, coraz bardziej staje się oczywiste, że ciemna energia może słabnąć w czasie i inne modele kosmologiczne mogą lepiej opisywać rzeczywistość.
      Coraz bardziej i bardziej wygląda na to, że musimy zmodyfikować nasz standardowy model kosmologiczny tak, by wszystkie dane do siebie pasowały. A przyjęcie, że ciemna energia ulega ewolucji wydaje się najbardziej obiecującą metodą modyfikacji, dodaje profesor Will Percival, drugi z rzeczników prasowych DESI.
      Jak na razie poziom ufności, że rzeczywiście chodzi o ewolucję ciemnej energii nie osiągnął 5 sigma, kiedy to mówi się o odkryciu. Jednak różne kombinacje danych z DESI z pomiarami CMB, supernowych i soczewkowania dają wartości od 2,8 do 4,2 sigma. Poziom 3 sigma oznacza, że istnieje 0,3% szansy, iż uzyskane dane nie są prawdziwe. Pozornie to niewiele, jednak w fizyce już niejednokrotnie zdarzało się, że obserwacje o poziomie ufności 3 sigma po uwzględnieniu dodatkowych danych okazywały się anomalią statystyczną. Dlatego właśnie o odkryciu jest mowa przy poziomie 5 sigma.
      Pozwalamy wszechświatowi opowiedzieć nam, jak działa i być może mówi nam, że jest bardziej złożony, niż sądziliśmy. To niezwykle interesujące, a coraz więcej linii dowodowych prowadzi nas w tym samym kierunku, dodaje Andrei Cuceu, który stoi na czele grupy roboczej Lyman-alpha, mapującej odległe obszary wszechświata na podstawie rozkładu międzygalaktycznego wodoru.
      Jeśli rzeczywiście ciemna energia słabnie, nie wiemy, co to oznacza. Być może rozszerzanie wszechświata się zatrzyma i pod wpływem grawitacji zacznie się on kurczyć. A być może ciemna energia ulegnie dodatkowemu wzmocnieniu i wszechświat zacznie rozszerzać się jeszcze szybciej. Nowe obserwacje otwierają przed teoretykami nowe możliwości. O ile, oczywiście, są prawdziwe.
      DESI prowadzi jeden z najszerzej zakrojonych przeglądów kosmosu. Supernowoczesny instrument jest w stanie jednocześnie badać światło z 5000 galaktyk. Celem projektu jest zbadanie 50 milionów galaktyk i kwazarów. Cel ten może zostać osiągnięty pod koniec 2026 lub na początku 2027 roku. W międzyczasie, jeszcze w bieżącym roku DESI opublikuje wyniki badań nad gromadzeniem się galaktyk i materii w ciągu miliardów lat. Proces ten obrazuje wzajemne oddziaływanie grawitacji i ciemnej energii. Wyniki tych badań powinny jeszcze lepiej pokazać, czy rzeczywiście ciemna energia ulega osłabieniu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pozwala na oglądanie kosmosu tak dokładnie, jak nigdy wcześniej. Dostarczył wielu danych, które zaskoczyły naukowców i zmusiły ich do uściślenia obowiązujących teorii, przyczynił się do pojawienia nowych hipotez, ma udział w interesujących odkryciach. Lior Shamir z Kansas State University poinformował na łamach Monthly Notices of the Royal Astronomical Society o kolejnej zaskakującej obserwacji. Uczony zauważył, że zdecydowana większość galaktyk spiralnych obraca się w tę samą stronę, przeciwną względem obrotu Drogi Mlecznej.
      Jeśli kierunek obrotu galaktyk byłby przypadkowy, to liczba galaktyk obracających się zgodnie z ruchem wskazówek zegara powinna być mniej więcej taka sama, co liczba galaktyk obracających się w stronę przeciwną. Tymczasem gdy Shamir przeanalizował dane dotyczące 263 galaktyk obserwowanych przez Webba w ramach programu James Webb Space Telescopce Advanced Deep Extragalactic Survey (JADES) okazało się, że 2/3 z nich (158) obraca zgodnie z ruchem wskazówek zegara, a obrót 1/3 (105) zachodzi w kierunku przeciwnym. To od razu rzuca się w oczy. Nie trzeba mieć specjalnych zdolności czy wiedzy, by zobaczyć, że liczby są tak bardzo różne. Dzięki JWST każdy może to zobaczyć, dziwi się Shamir.
      To nie pierwszy raz gdy Shamir, ale też i inni uczeni, zauważają taki rozdźwięk. W swojej pracy Shamir wspomina na przykład o galaktykach obrazowanych w ramach SDSS (Sloan Digital Sky Survey). Badania ponad 36 000 galaktyk również pokazują nierównowagę i – co interesujące – im bardziej galaktyki są od nas oddalone, tym nierównowaga ta większa.
      Wracając jednak do obecnych badań, Shamir stwierdza, że istnieją dwa możliwe wyjaśnienia zaobserwowanego zjawiska. Być może wszechświat obracał się w momencie narodzin. Wyjaśnienie to jest zgodne z teoriami takimi jak kosmologia czarnej dziury, zgodnie z którą cały wszechświat znajduje się wewnątrz czarnej dziury. Jeśli jednak rzeczywiście wszechświat obracał się w momencie narodzin, to oznacza, że obowiązujące teorie są niekompletne, mówi Shamir.
      Ziemia, wraz z Układem Słonecznym, krążą wokół centrum Drogi Mlecznej. Efekt Dopplera powoduje, że galaktyki obracające się w przeciwnym kierunku, niż obrót Ziemi względem centrum naszej galaktyki, będą wydawały się nam jaśniejsze. Tutaj może tkwić kolejne z możliwych wyjaśnień naszej zagadki. Astronomowie powinni brać pod uwagę wpływ prędkości obrotowej Drogi Mlecznej – zjawisko to się pomija, gdyż powszechnie uważa się, że jego wpływ jest pomijalny – na pomiary dotyczące innych galaktyk.
      Jeśli rzeczywiście w tym tkwi problem, to musimy inaczej skalibrować instrumenty do obserwacji głębokich partii kosmosu. Zmiana kalibracji i pomiarów odległości pozwoliłaby też rozwiązać kilka ważnych zagadek kosmologicznych, takich jak prędkość rozszerzania się wszechświata czy istnienie galaktyk, które – zgodnie z obecnymi pomiarami – są starsze od wszechświata, mówi Shamir.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
      Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
      Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
      O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
      To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
      Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W danych z nieczynnego już satelity ROSAT (Roentgen Satellite) znaleziono największą superstrukturę w lokalnym wszechświecie. I, jak twierdzą jej odkrywcy, największą w ogóle strukturę, o której można powiedzieć, że stanowi całość. Naukowcy z Instytutu Maxa Plancka, Uniwersytetu Ludwika i Maksymiliana w Monachium, Uniwersytetu w Kapsztadzie i Europejskiej Agencji Kosmicznej przyjrzeli się obszarowi położonemu w odległości 416–826 milionów lat świetlnych od Ziemi (przesunięcie ku czerwieni z=0,03–0,06). Zauważyli tam gigantyczną superstrukturę o długości 1,4 miliarda lat świetlnych. Nazwali ją Quipu.
      W wielkiej skali wszechświat jest niemal homogeniczny. Jednak gdy przyjrzymy się mniejszym skalom, okazuje się, że występują w nim znaczne różnice w rozkładzie materii. Dokładna wiedza na ten temat jest niezbędna do prowadzenia badań kosmologicznych. Jeśli przyjrzysz się rozkładowi gromad galaktyk na nieboskłonie na sferze znajdującej się w odległości 416–826 milionów lat świetlnych, natychmiast zobaczysz olbrzymią strukturę, która rozciąga się od wysokości północnych niemal do południowej krawędzie nieboskłonu, mówi główny autor bada Hans Böhringer. Składa się ona z 68 gromad galaktyk, ma około 1,4 miliarda lat świetlnych długości, a jej masę oszacowano na 2,4x1017 mas Słońca. Wykracza ona poza wszystko, co dotychczas udało się wiarygodnie zmierzyć we wszechświecie.
      Satelita ROSAT w ciągu ośmiu lat pracy dokonał przeglądu całego nieba w zakresie promieniowania rentgenowskiego. Dzięki niemu skatalogowano około 80 tysięcy źródeł takiego promieniowania i około 6 tysięcy źródeł skrajnego ultrafioletu. Dostarczone przez niego dane wciąż są analizowane i opracowywane. Dzięki nim naukowcy stworzyli bardziej precyzyjne trójwymiarowe mapy rozkładu gromad galaktyk. Stworzony w ten sposób katalog opisuje przestrzeń w odległości do 1 miliarda lat świetlnych od Ziemi.
      Odkrycie Quipu ma duże znaczenie dla pomiarów kosmologicznych. Obecność taki struktur wpływa bowiem na pomiary stałej Hubble'a czy mikrofalowego promieniowania tła. Nawet jeśli wpływ takich struktur zmienia wartości o kilka procent, to jest wpływ niezmiernie istotny, gdyż potrafimy dokonywać coraz bardziej precyzyjnych pomiarów, wyjaśnia Gayoung Chon z Instytutu Fizyki im. Maxa Plancka.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM).
      Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters.
      Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk.
      W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza.
      Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd.
      Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki.
      Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...