Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

DESI stworzy trójwymiarową mapę galaktyk i rozkładu ciemnej energii we wszechświecie

Recommended Posts

Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian.

Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy.

DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji.

DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych.

Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawe, czy rzeczywiście da się na odległość ustalić taką masę ciemnej energii na takim obszarze i (czego tutaj nie powiedziano) gdzie właściwie ten teleskop zostanie ustawiony. Na księżycu?

Share this post


Link to post
Share on other sites

@rozan może jednak lepiej czytaj artykuł przed pisaniem. :)

W dniu 12.11.2019 o 12:47, KopalniaWiedzy.pl napisał:

Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Very Large Telescope zauważył sześć galaktyk zgromadzonych wokół supermasywnej czarnej dziury z czasów, gdy wszechświat liczył sobie mniej niż miliard lat. Po raz pierwszy zauważono takie zgrupowanie z czasów tak nieodległych od Wielkiego Wybuchu. Odkrycie pomaga lepiej zrozumieć, w jaki sposób supermasywne czarne dziury mogą powstawać i ewoluować tak szybko.
      Głównym celem naszych badań było lepsze zrozumienie jednych z najbardziej niezwykłych obiektów astronomicznych – supermasywnych czarnych dziur istniejących już we wczesnym wszechświecie. Dotychczas nikt nie potrafi dobrze wyjaśnić ich istnienia, mówi główny autor badań, Marco Mignoli z Narodowego Instytutu Astrofizyki w Bolonii.
      Nowe obserwacje ujawniły istnienie galaktyk znajdujących się w okolicach supermasywnej czarnej dziury, a całość otoczona jest „pajęczą siecią” gazu rozciągającego się na obszarze 300-krotnie większym niż obszar Drogi Mlecznej. Olbrzymia ilość gazu zasila zarówno galaktyki, jak i czarną dziurę. Naukowcy szacują, że czarna dziura ma masę miliarda mas Słońca, a otaczająca całość gazowa struktura powstała, gdy wszechświat liczył sobie zaledwie 900 milionów lat.
      Obecnie uważa się, że pierwsze czarne dziury powstały z pierwszych gwiazd, które się zapadły. Musiały one błyskawicznie ewoluować, skoro po 900 milionach lat istnienia wszechświata osiągały masę miliarda Słońc. Astronomowie mają jednak problemy z wyjaśnieniem tej ewolucji. Takie czarne dziury musiałyby bowiem bardzo szybko wchłaniać olbrzymie ilości materii. Odkrycie galaktyk otaczających czarną dziurę i spowijającej wszystko sieci gazu może wyjaśniać tę błyskawiczną ewolucję.
      Powstaje jednak pytanie, w jaki sposób dochodzi do tworzenia się „pajęczej sieci” gazu. Astronomowie sądzą, że bierze w tym udział ciemna materia. To ona przyciąga gaz, który tworzy olbrzymie struktury, wystarczające, by wyewoluowały z nich zarówno galaktyki, jak i czarne dziury.
      Nasze badania wspierają hipotezę mówiącą, że najbardziej odległe masywne czarne dziury tworzą się i rosną w masywnym halo ciemnej materii. Dotychczas takich struktur nie wykrywaliśmy, gdyż ograniczały nas nasze możliwości obserwacyjne, wyjaśnia współautor badań Colin Norman z Uniwersytetu Johnsa Hopkinsa. Zaobserwowane teraz galaktyki są jednymi z najsłabiej świecących, jakie udało się zarejestrować.  Aby je zauważyć, konieczne były wielogodzinne obserwacje za pomocą jednych z najpotężniejszych teleskopów optycznych. Dzięki temu uczeni dowiedli też, że istnieje związek pomiędzy czterema galaktykami, a czarną dziurą
      Sądzimy, że obserwujemy wierzchołek góry lodowej. Że te galaktyki, które widzimy, są najjaśniejszymi, jakie się tam znajdują, przyznaje Barbara Balmaverde z Narodowego Instytutu Astrofizyki w Turynie.
      Pozostaje tylko mieć nadzieję, że jeszcze większe teleskopy optyczne, jak budowany właśnie Extremely Large Telescope, pozwolą dostrzec więcej szczegółów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trójwymiarowa mapa wszechświata ujawniła istnienie jednej z największych znanych człowiekowi struktur. Ściana Bieguna Południowego, bo tak nazwano tę strukturę, składa się z setek tysięcy galaktyk i rozciąga na odległość 1,4 miliarda lat świetlnych. Wcześniej tego giganta nie zauważono, gdyż jego większa część znajduje się za jasno świecącą Drogą Mleczną.
      Ściana Bieguna Południowego rozmiarami dorównuje Wielkiej Ścianie Sloan, szóstej największej strukturze wszechświata.
      Astronomowie od dawna wiedzą, że galaktyki nie są rozrzucone przypadkowo, ale tworzą wielką kosmiczną sieć. Składa się ona ze zbiorów galakty i wielkich struktur gazowych pomiędzy nimi, a wszystko to poprzedzielane jest pustką kosmosu. Kosmografia zajmuje się mapowaniem tej struktury. Już wcześniej kosmografowie zauważyli inne gigantyczne struktury wszechświata.
      W 2014 roku Daniel Pomarede z Uniwersytetu Paris-Saclay poinformował o istnieniu supergromady Laniakei. To wielka gromada galaktyk, do której należy też Droga Mleczna. Laniakea ma szerokość 520 milionów lat świetlnych.
      Teraz Pomarede i jego zespół przyjrzeli się obszarowi znanemu jako strefa unikania. To ten fragment południowej części wszechświata, który jest przed naszymi oczami przesłonięty Drogą Mleczną. Jasne światło naszej galaktyki przesłania to, co poza nim. Naukowcy śledzili zarówno przesunięcie galaktyk ku czerwieni, jak i ich ruch względem siebie oraz oddziaływania grawitacyjne. Następnie dzięki specjalnym algorytmom uczeni byli w stanie określić, jak wygląda rozkład materii w strefie unikania i wokół niej.
      Analiza wykazała istnienie olbrzymiej struktury z centrum na południowym nieboskłonie, której jedno wielkie ramię rozciąga się w kierunku Gwiazdozbioru Wieloryba, a drugie w kierunku Gwiazdozbioru Ptaka Rajskiego.
      Ściana Bieguna Południowego trafi więc do czołówki największych struktur we wszechświecie. Na czele tej listy znajduje się gigantyczna Wielka Ściana Herkulesa-Korony Północy, której rozpiętość sięga 10 miliardów lat świetlnych. W 2015 roku informowaliśmy o odkryciu Gigantycznego Pierścienia Rozbłysków Gamma. Rozciąga się on na 5,6 miliarda lat świetlnych. Pokonał więc ówczesną rekordzistkę, czyli Olbrzymią Wielką Grupę Kwazarów o szerokości 4 miliardów lat świetlnych. Strukturami większymi od Ściany Bieguna Południowego są jeszcze Wielka Grupa Kwazarów U1.11 (2,5 miliarda lat świetlnych) oraz Wielka Grupa Kwazarów Clowesa-Campusano (2 miliardy lat świetlnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyk z Uniwersytetu w Genewie zaproponował rozwiązanie poważnego kryzysu, trapiącego kosmologię. Kryzysowi temu na imię stała Hubble'a. To jedna z podstawowych stałych kosmologicznych. Opisuje ona tempo rozszerzania się wszechświata. Problem w tym, że dotychczasowe obliczenia i badania dają co najmniej dwa różne, zbyt różne, wyniki. Profesor Lucas Lombriser twierdzi, że wie, skąd bierze się ta różnica.
      Stałą Hubbla wyznacza się za pomocą dwóch głównych metod. Pierwsza, pomiary promieniowania mikrofalowego tła, wskazuje, że wszechświat rozszerza się z prędkością 64,4 km/s/Mpc, czyli, że na każdy megaparsek (3,26 miliona lat świetlnych) tempo rozszerzania się wszechświata rośnie o 64,4 km/s. Jednak obliczenia z wykorzystaniem cefeid, zmiennych gwiazd pulsujących, dają wartość 73,4 km/s/Mpc. Różnica jest tak duża, że obliczeń tych nie da się pogodzić. W miarę upływu lat te dwie wartości były wyznaczane coraz bardziej precyzyjnie, ale różnica między nimi pozostawała. To doprowadziło do sporu naukowego. Pojawiły się głosy, że mamy do czynienia z „nową fizyką”.
      Lombriser wysunął jednak hipotezę, która nie wymaga odwoływania się do „nowej fizyki”. Zdaniem uczonego, należy przyjąć wszechświat nie jest homogeniczny. Oczywiście takie założenie jest prawdziwe, jednak w dość niewielkich skalach. Nie ma wątpliwości, że w galaktykach i poza nimi materia rozłożona jest inaczej. Jednak trudno wyobrazić sobie różnice w skalach tysiąckrotnie większych niż galaktyki.
      Jeśli znajdowalibyśmy się w gigantycznym „bąblu”, w którym gęstość materii jest znacząco mniejsza niż gęstość materii we wszechświecie, miałoby to konsekwencje dla odległości do supernowych i dla określenia stałej Hubble'a, mówi Lombriser. Naukowiec zaproponował hipotezę, że Droga Mleczna i tysiące innych galaktyk poruszają się w bąblu o średnicy 250 milionów lat świetlnych, w którym gęstość materii jest o 50% niższa niż w reszcie wszechświata.
      Jeśli w takim bąblu znajdują się obiekty, z galaktyk których używamy do wyznaczania stałej Hubble'a, to po przeprowadzeniu obliczeń okazuje się, że uzyskane wyniki w wysokim stopniu zgadzają się z obliczeniami, w których uwzględniane jest mikrofalowe promieniowanie tła. Prawdopodobieństwo, że istnieje tego typu fluktuacja [wspomniany bąbel – red.] wynosi między 1/20 a 1/5, co oznacza, że to nie jest tylko fantazja teoretyka. We wszechświecie istnieje wiele takich regionów jak nasz, mówi Lombriser.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie odkryli czarną dziurę, która – jak się wydaje – przyczynia się do powstawania gwiazd w odległych od niej galaktykach. Jeśli odkrycie się potwierdzi, będzie to oznaczało, że zaobserwowano czarną dziurę rozpalającą gwiazdy w największej znanej nam odległości. Naukowcy z włoskiego Narodowego Instytutu Astrofizyki informują o czarnej dziurze, która powoduje powstawanie gwiazd w odległości miliona lat świetlnych od siebie.
      Po raz pierwszy obserwuję pojedynczą czarną dziurę, która powoduje powstawanie gwiazd w więcej niż jednej galaktyce. To fascynujące, że czarna dziura z jednej galaktyki może decydować o tym, co dzieje się w galaktykach oddalonych od niej o miliony bilionów kilometrów, mówi Roberto Gilli, główny autor badań.
      Włosi obserwowali supermasywną czarną dziurę znajdującą się w galaktyce oddalonej o 9,9 miliarda lat świetlnych od Ziemi. Sąsiaduje ona z co najmniej 7 innymi galaktykami.
      Już wcześniej naukowcy zaobserwowali dżet wysokoenergetycznych cząstek o długości około miliona lat świetlnych. Jego źródłem jest obserwowana czarna dziura. Włosi odkryli, że jeden z końców strugi otoczony jest gigantycznym bąblem gorącego gazu podgrzewanego wskutek interakcji wysokoenergetycznych cząstek z otaczającą materią. Uczeni sądzą, że rozszerzający się bąbel, przechodząc przez sąsiadujące galaktyki, może wytwarzać falę uderzeniową, która kompresuje zimny gaz i powoduje powstawanie gwiazd. Wszystkie objęte bąblem galaktyki znajdują się w odległości około 400 000 lat świetlnych od jego centrum.
      Naukowcy obliczają, że tempo formowania się gwiazd w tych galaktykach jest od 2 do 5 razy szybsze niż w podobnych im galaktykach znajdujących się w tej samej odległości od Ziemi.
      Znamy historię króla Midasa, który dotykiem zamieniał wszystko w złoto. Tutaj mamy przypadek czarnej dziury, która zamienia gaz w gwiazdy, a jej zasięg jest międzygalaktyczny, mówi współautor badań, Marco Mignoli.
      To wyjątkowe obserwacje. Dotychczas bowiem znajdowano czarne dziury, które zwiększały tempo formowania się gwiazd o 30% i oddziaływały na galaktyki znajdujące się w odległości nie większej niż 50 000 lat świetlnych od ich rodzimej galaktyki.

      « powrót do artykułu
×
×
  • Create New...