Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Ze względu na swe korzystne właściwości (np. niską gęstość czy oporność na korozję) tytan jest często wykorzystywany w różnego rodzaju implantach: od stomatologicznych po endoprotezy stawów. Implanty, w których wykorzystuje się metal, mają jednak pewną wadę - akumulują się na nich mikroorganizmy, które wywołują infekcje i chroniczny stan zapalny otaczającej tkanki. Przez to, by zapobiec zakażeniu krwi, a później narządów, w ciągu 10-15 lat trzeba usuwać 5-10% implantów stomatologicznych.

Nowe badanie dr. Tagbo Niepy z Uniwersytetu w Pittsburghu pokazało, że takie infekcje można skutecznie eliminować za pomocą terapii elektrochemicznej (ang. electrochemical therapy, ECT). ETC zwiększa bowiem zdolność leków do eliminowania patogenów.

Żyjemy w czasach kryzysu antybiotyków [także przeciwgrzybicznych], gros z nich [przecież] nie działa. Z powodu oporności rozwijanej przez wiele mikroorganizmów leki przestają spełniać swoje zadanie; dzieje się tak zwłaszcza w przypadku nawracających infekcji. W opisywanej technice [...] prąd prowadzi do uszkodzenia ściany/błony komórkowej mikroorganizmu. [Jednym słowem] prawdopodobieństwo, że lek zadziała, rośnie, jeśli w okresie jego podawania prąd zwiększa przenikalność błony. W ten sposób nawet lekooporne komórki staną się wrażliwe na terapię i zostaną wyeliminowane.

Autorzy artykułu z pisma ACS Applied Materials & Interfaces tłumaczą, że słaby prąd wpływa na przyczepione mikroorganizmy. Nie zaszkodzi jednak znajdującej się w pobliżu zdrowej tkance.

Niepa i inni dodają, że większość antybiotyków działa lepiej na komórki, które aktywnie replikują. Niestety, nie wpływają one na komórki uśpione, przez co infekcja może nawracać. Co istotne, ETC wywołuje stres elektrochemiczny we wszystkich interesujących klinicystów komórkach. Przez to wzrasta ich wrażliwość na lek.

Podczas eksperymentów zespół Niepy koncentrował się na bielniku białym (Candida albicans), drożdżaku, który wywołuje jedne z najczęstszych i najbardziej szkodliwych zakażeń grzybicznych związanych z implantami stomatologicznymi.

Najpierw akademicy badali antygrzybiczne właściwości ETC, prowadzonej za pomocą tytanowych elektrod. Wykazali, że prąd może zmniejszyć liczbę żywotnych komórek planktonowych C. albicans nawet o 99,7%, a komórek biofilmu do 96,0-99,99%. Na dalszych etapach studium zespół oceniał skuteczność połączenia ETC z flukonazolem. Okazało się, że terapia elektrochemiczna znacząco zwiększa grzybobójcze działanie flukonazolu. O ile sam lek wykazuje niewielką skuteczność wobec komórek fazy stacjonarnej wzrostu C. albicans oraz biofilmów, o tyle połączenie flukonazolu z ETC daje świetne rezultaty.

Analizy pokazały, że sekwencyjna terapia (najpierw ETC, potem lek) prowadzi do zaburzenia funkcji błony komórkowej, przepuszczalności, upośledzenia funkcji metabolicznych i zwiększonej wrażliwości na flukonazol (penetracja leku do komórki jest ułatwiona, dzięki czemu może on wejść w interakcje z kwasem nukleinowym). Co ważne, dochodzi do zmiany struktury biofilmu.

Niepa widzi też inne zastosowania opisywanej metody. Wg niego, połączenie ETC i antybiotyków może się sprawdzić np. w przypadku opatrunków i leczenia ran.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Chcielibyście wiedzieć, jaka kombinacja antybiotyków najlepiej zadziała na konkretnego pacjenta? I znaleźć ją w 12, a może nawet w 6 godzin, na miejscu? A może marzy się wam przeszukiwanie tysięcy próbek naraz w poszukiwaniu swoistych przeciwciał? To wszystko umożliwia nowy chip stworzony przez naukowców z IChF PAN. Jest tani, szybki i wiarygodny. Może zastąpić szybkie testy immunochromatograficzne i daje pacjentom większe szanse na pokonanie zakażenia.
      Nowe narzędzie diagnostyczne tworzy zespół pod kierunkiem prof. Piotra Garsteckiego. W pracy opublikowanej w Micromachines badacze wykazali, że połączenie kilku różnych, prostych metod pozwala stworzyć przyjazny użytkownikom zestaw do badania wrażliwości bakterii na antybiotyki. Nowy chip wykorzystuje mniej odczynników i antybiotyków niż standardowy antybiogram na agarowej pożywce, a jego użycie jest tak proste jak Etestu. Użytkownik może też wybrać sposób wizualizacji wyników, np. wykorzystując metaboliczne wskaźniki obecności bakterii, barwniki fluorescencyjne albo efekt kolorymetryczny.
      Chcieliśmy zbadać antybiotykowrażliwość najprościej, jak tylko się da, nie tylko dla pojedynczej substancji bakteriobójczej, ale także dla ich kombinacji albo w różnych warunkach - wyjaśnia dr Ladislav Derzsi, jeden z autorów pracy nadzorujący projekt. By stworzyć nasz chip, połączyliśmy kilka rzeczy odkrytych zupełnie niezależnie. Wykorzystaliśmy np. standardowe techniki fotolitografii i litografii tworzyw sztucznych, powszechnie używane do produkcji tzw. laboratoriów chipowych (LOC), i połączyliśmy je z techniką druku bezkontaktowego na specjalnie dla nas zaprojektowanej maszynie. Dzięki połączeniu tych metod naukowcy są w stanie precyzyjnie zakraplać mikroskopijne ilości dowolnej cieczy w mikrodołki chipu na podobnej zasadzie, jak działają drukarki atramentowe lub laserowe. W prezentowanym badaniu zakraplane były roztwory antybiotyków w różnym stężeniu i różnych kombinacjach. Drukarki mają maleńkie dysze i wykorzystując siły piezoelektryczne, potrafią precyzyjnie dostarczać w żądany punkt określoną objętość atramentu: nanolitry, pikolitry, ba, nawet femtolitry - mówi dr Derzsi. My robimy podobnie, tyle że zamiast atramentu dostarczamy antybiotyki i nie na papier, lecz do mikrodołków z plastycznego elastomeru. Rozpuszczalnik, czyli woda, odparowuje, a to, co zostaje, to mikroskopijna dawka antybiotyku. W opisywanym badaniu mikrodołki były stosunkowo duże, miały 1 mm średnicy i pojemność ok. 0,67 mikrolitra. Na każdym chipie umieściliśmy 1024 takie celki. To o rząd wielkości więcej niż na standardowych płytkach, które mają 96 dołków i to mimo że nasza konstrukcja jest o połowę mniejsza. Co więcej, zmniejszając indywidualne rozmiary każdej celki, liczbę mikrodołków można zwiększyć nawet do 10000 na standardowych rozmiarów chip - dodaje naukowiec.
      By ułatwić korzystanie z nowej metody, badacze owijają chipy taśmą polimerową, by odciąć dostęp powietrza, a następnie poddają je działaniu próżni. W ten sposób sprzęt jest dostarczany do końcowego użytkownika w postaci sterylnej, w podciśnieniu. W wersji komercyjnej zapewne dodatkowo pakowalibyśmy chipy próżniowo tak, jak to się robi z żywnością - wyjaśnia dr Derzsi. Użytkownik musi tylko odpakować płytkę, wprowadzić roztwór bakterii zwykłą, dostępną na rynku pipetą, a potem dodać niewielką ilość oleju, który rozdziela dołki i pomaga uniknąć ich krzyżowego skażenia. Później trzeba już tylko włożyć płytkę do cieplarki i... czekać na wynik. Po zadanym czasie można odczytać, jaka kombinacja antybiotyków i w jakich stężeniach działa najlepiej; innymi słowy, zobaczyć, gdzie bakterie rosną niechętnie lub wcale.
      Wielką zaletą nowego systemu diagnostycznego jest jego elastyczność. Można wytwarzać sterylne zestawy pod dyktando odbiorcy, z różnymi antybiotykami w różnych kombinacjach. My badaliśmy na jednej płytce 6 pojedynczych antybiotyków w ośmiu różnych stężeniach i –  dla zwiększenia precyzji – w ośmiu powtórzeniach. Testowaliśmy też ich kombinacje, umieszczając w jednym mikrodołku po dwa z sześciu badanych antybiotyków i sprawdzając ich działanie w szeregu powtórzeń. Można zresztą badać połączenia wielu antybiotyków, inhibitorów i substancji pomocniczych, wstrzykując je do jednej celki w zadanych przez odbiorcę kombinacjach - mówi dr Derzsi - ale zwykle lekarze nie podają pacjentowi więcej niż dwóch, by nie przeciążać jego organizmu. Dzięki naszej metodzie mogą pobrać od chorego próbkę i sprawdzić, który antybiotyk lub jakie ich połączenie zadziała optymalnie w tym konkretnym przypadku, czyli zidywidualizować leczenie, zamiast polegać na statystycznych uogólnieniach. A przecież każdy z nas reaguje na terapię nieco inaczej, nawet jeśli chorobę wywołały te same mikroby. Chodzi o mikroflorę, indywidualną zmienność metabolizmu i wiele innych czynników. Można zatem powiedzieć, że opracowana w IChF PAN metoda to krok przybliżający nas w stronę medycyny spersonalizowanej. Z drugiej strony, to wielka pomoc nie tylko dla klinicystów, ale i dla badaczy próbujących znaleźć nowe, nieoczywiste połączenia antybiotykowe, które działałyby lepiej od tych powszechnie znanych.
      Choć praca zespołu prof. Garsteckiego skupiała się na antybiotykowrażliwości bakterii, sama metoda ma potencjał, by po wprowadzeniu pewnych zmian można ją było wykorzystywać także np. do identyfikacji swoistych genów albo przeciwciał. Zwłaszcza że byłoby to ekonomiczne. Pojedyncza płytka nie powinna kosztować więcej niż 5 euro. Metody mikrofluidyczne mają jeszcze jedną zaletę: poszukując nowych leków, naukowcy często mają do dyspozycji bardzo ograniczoną liczbę potencjalnie leczniczych substancji. Dzięki drukowi bezkontaktowemu mogą przetestować więcej różnych stężeń i kombinacji takich leków in spe, zanim zabraknie im substratu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bakterie coraz częściej nabywają oporności na stosowane przez nas antybiotyki. Naukowcy z Uniwersytetu Południowej Danii zauważyli, że składnik konopi siewnych, kannabidiol (CBD), wspomaga działanie antybiotyków. To już kolejne badania wskazujące, że CBD może być skuteczny w walce z infekcjami bakteryjnymi.
      Problem antybiotykooporności narasta na całym świecie i naukowcy od lat alarmują, że jeśli nic się nie zmieni i nie będziemy w stanie opracowywać coraz to nowszych skuteczniejszych antybiotyków, to w przyszłości ludzie mogą zacząć umierać na choroby, które od dziesięcioleci nie stanowią dla nas zagrożenia.
      Dlatego tez trwają prace nie tylko nad nowymi antybiotykami, ale też nad składnikami wspomagającymi ich działanie. Jednym z takich składników może być kannabidiol.
      Janne Kudsk Klitgaard i Claes Sondergaard Wassmann informują na łamach Scientific Reports o wynikach swoich badań. Gdy zastosowali oni CBD wraz z antybiotykami zauważyli, że takie połączenie bardziej efektywnie zwalcza bakterie niż same antybiotyki. Potrzebowaliśmy mniej antybiotyku by zabić daną liczbę bakterii, mówią naukowcy.
      Podczas badań CBD zostało użyte do wzmocnienia działania bacytracyny przeciwko bakteriom Gram-dodatnim. Okazało się, że składnik konopii wspomaga zwalczanie metycylinoopornego gronkowca złocistego (MRSA), Enterococcus faecalis, Listeria monocytogenes oraz metycyliooporny Staphylococcus epidermidis. Kombinacja taka nie działa jednak na bakterie Gram-ujemne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytmy do maszynowego uczenia się pozwoliły specjalistom z MIT zidentyfikować nowe potężne antybiotyki. Podczas testów laboratoryjnych nowe związki zabiły jedne z najtrudniejszych w zwalczaniu bakterii chorobotwórczych, w tym szczepy oporne na działanie wszystkich znanych antybiotyków. Jakby tego było mało, umożliwiły one zwalczenie infekcji w dwóch różnych mysich modelach chorób.
      Naukowcy wykorzystali model komputerowy, który pozwala na przeanalizowanie w ciągu zaledwie kilku dni działania setek milionów związków chemicznych. Taka analiza pozwala na wybór do dalszych badań najbardziej obiecujących środków. Uczeni szukają związków, które zabijają bakterie w inny sposób, niż obecnie znane antybiotyki.
      Chcieliśmy stworzyć platformę, która pozwoliłaby nam na wykorzystanie sztucznej inteligencji do zapoczątkowania nowej epoki w odkrywaniu antybiotyków. Dzięki takiemu podejściu natrafiliśmy na zadziwiającą molekułę, która jest jednym z najpotężniejszych znanych antybiotyków, mówi profesor James Collins z MIT.
      Przy okazji zidentyfikowano wiele innych obiecujących kandydatów na antybiotyki. Substancje te dopiero będą testowane. Uczeni uważają, że ich model można wykorzystać również do projektowania nowych leków.
      Model maszynowego uczenia się pozwala nam masowo badać związki chemiczne. Przeprowadzenie takich badań w laboratorium byłoby niemożliwe ze względu na koszty, dodaje Regina Barzilay z Computer Science and Artificial Intelligencje Laboratory (CSAIL) na MIT.
      Przez ostatnich kilkadziesiąt lat wynaleziono niewiele nowych antybiotyków, a większość z tych nowych to lekko istniejące wersje wcześniej istniejących. Obecnie wykorzystywane metody badania związków chemicznych pod kątem ich przydatności do produkcji antybiotyków są niezwykle kosztowne, wymagają dużo czasu i zwykle pozwalają zbadać wąską grupę mało zróżnicowanych środków.
      Stoimy w obliczu rosnącej antybiotykooporności. Z jednej strony problem ten spowodowany jest coraz większą liczbą antybiotykoopornych patogenów, a z drugiej – powolnym postępem na tym polu, mówi Collins. Coraz częściej pojawiają się głosy, że ludzie mogą zacząć umierać na choroby zakaźne, na które nie umierali od dziesięcioleci. Dlatego też niezwykle pilnym zadaniem jest znalezienie nowych antybiotyków. Niedawno informowaliśmy o odkryciu antybiotyków, które zabijają bakterie w niespotykany dotąd sposób.
      Pomysł wykorzystania komputerów do identyfikowania potencjalnych antybiotyków nie jest nowy, dotychczas jednak obliczenia takie były albo niezwykle czasochłonne, albo niedokładne. Nowe sieci neuronowe znacznie skracają czas obliczeń.
      Naukowcy z MIT dostosowali swój model obliczeniowy tak, by poszukiwał związków chemicznych mogących być zabójczymi dla E. coli. Swój model trenowali na około 2500 molekuł, w tym na około 1700 lekach zatwierdzonych przez FDA i około 800 naturalnych produktach o zróżnicowanych strukturach i działaniu.
      Po zakończonym treningu sieć neuronowa została przetestowana na należącej do Broad Institute bazie Drug Repository Hub, która zawiera około 6000 związków. Algorytm znalazł tam molekułę, która miała strukturę inną od wszystkich istniejących antybiotyków i o której sądził, że będzie wykazywała silne działanie antybakteryjne. Naukowcy najpierw poddali tę molekułę badaniom za pomocą innego modelu maszynowego i stwierdzili, że prawdopodobnie jest ona mało toksyczna dla ludzi.
      Halicyna, bo tak nazwano tę molekułę, była w przeszłości badana pod kątem jej przydatności w leczeniu cukrzycy. Teraz naukowcy przetestowali ją na dziesiątkach szczepów bakterii pobranych od ludzi. Okazało się, że zabija ona wiele antybiotykoopornych patogenów, w tym Clostridium difficile, Acinetobacter bumannii czy Mycobacterium turebculosis. Jedynym patogenem, który oparł się jej działaniu była Pseudomonas aeruginosa, powodująca trudne w leczeniu choroby płuc.
      Po pomyślnych testach in vitro rozpoczęto badania na zwierzętach. Halicynę użyto do leczenia myszy zarażonej wcześniej opornym na działanie wszystkich znanych antybiotyków szczepem A. baumannii. Halicyna w ciągu 24 godzin zwalczyła infekcję u zwierząt.
      Wstępne badania sugerują, że nowy antybiotyk działa poprzez zaburzanie u bakterii możliwości utrzymania gradientu elektrochemicznego w błonie komórkowej. Gradient ten jest niezbędny m.in. do wytwarzania molekuły ATP, niezbędnego nośnika energii. Bakterie pozbawione ATP giną. Naukowcy uważają, że bakteriom będzie bardzo trudno nabyć oporność na taki sposób działania antybiotyku.
      Podczas obecnych badań uczeni stwierdzili, że w ciągu 30 dni leczenia u E. coli w ogóle nie rozwinęła się oporność na halicynę. Tymczasem np. oporność na cyprofloksacynę zaczyna się u E. coli rozwijać w ciągu 1-3 dni od podania, a po 30 dniach bakteria jest 200-krotnie bardziej oporn działanie tego środka.
      Po zidentyfikowaniu halicyny naukowcy wykorzystali swój model do przeanalizowania ponad 100 milionów molekuł wybranych z bazy ZINC15, w której znajduje się około 1,5 miliarda molekuł. Analiza trwała trzy doby, a sztuczna inteligencja znalazła 23 molekuły, które są niepodobne do żadnego istniejącego antybiotyku i nie powinny być toksyczne dla ludzi. Podczas testów in vitro stwierdzono, że 8 z tych molekuł wykazuje właściwości antybakteryjne, z czego 2 są szczególnie silne. Uczeni planują dalsze badania tych molekuł oraz analizę pozostałych związków z ZINC15.
      Naukowcy planują dalsze udoskonalanie swojego modelu. Chcą np. by poszukiwał on związków zdolnych do zabicia konkretnego gatunku bakterii, a oszczędzenia bakterii korzystnych dla ludzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy wykazano, że dysfunkcje dotyczące naczyń krwionośnych odgrywają ważną rolę w rozwoju nieswoistego zapalenia jelit (ang. inflammatory bowel diseases, IBD). Na modelach eksperymentalnych zaprezentowano, że wyeliminowanie tych dysfunkcji znacząco spowalnia postępy choroby.
      Dotąd naukowcy analizujący mechanizmy IBD koncentrowali się na nabłonku i komórkach zapalnych. Choć wiadomo, że komórki zapalne mogą się dostać do odpowiednich tkanek przez naczynia krwionośne, rola tych ostatnich w IBD nie była dogłębnie badana. Zespół z Universitätsklinikum Erlangen postanowił uzupełnić tę lukę w wiedzy.
      Okazało się, że w przebiegu IBD naczynia stają się nadmiernie przepuszczalne. Analizy molekularne ujawniły przyczynę tego zjawiska - są nią zaburzenia dotyczące bariery naczyniowej, a konkretnie połączeń adherentnych (ang. adherens junctions), w skład których wchodzi VE-kadheryna (ang. VE-cadherin). Dysfunkcja jest wywoływana przez cytokinę interferon-γ, która oddziałuje patogennie na VE-kadherynę.
      Interferon-γ występuje w zwiększonych stężeniach w tkance objętej stanem zapalnym. W normalnych warunkach śródbłonek, który pokrywa wewnętrzną powierzchnię naczyń, tworzy barierę kontrolującą wymianę związków i komórek immunologicznych między tkanką a krwią.
      Zwiększoną przepuszczalność (przeciekanie) naczyń zademonstrowano zarówno w modelach eksperymentalnych, jak i u pacjentów z IBD.
      Gdy u myszy zastosowano specyficzny dla nabłonka knock-out (rozbicie genu) podjednostki receptora interferonu-γ (Ifngr2), nie występowało ostre zapalenie jelita, które zwykle indukuje się za pomocą siarczanu dekstranu (DSS).
      Bardzo ważne było spostrzeżenie, że imatinib (dotąd stosowany głównie w terapii nowotworów) także hamuje przepuszczalność naczyń (odtwarza połączenia adherentne). Jego zastosowanie znacząco zmniejsza stan zapalny jelita grubego w eksperymentalnym IBD.
      Autorzy artykułu z Journal of Clinical Investigation podkreślają, że jako pierwsi udowodnili, jak dużą rolę odgrywa układ krążenia w IBD. Stwarza to nowe możliwości leczenia nieswoistego zapalenia jelit.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stężenie antybiotyków w niektórych rzekach aż 300-krotnie przekracza bezpieczne poziomy, odkryli naukowcy, którzy dokonali pierwszego globalnego studium na ten temat.
      Naukowcy przyjrzeli się rzekom w 72 krajach na 6 kontynentach i szukali w nich 14 najczęściej stosowanych antybiotyków. Okazało się, że występują one w 65% monitorowanych miejsc.
      Największe przekroczenie norm dotyczyło metronidazolu, leku stosowanego przeciwko różnego typu infekcjom, w tym infekcjom skóry i jamy ustnej. W jednej z rzek Bangladeszu jego stężenie było o 300 razy większe niż poziom uznawany za bezpieczny. Ogólnie w Bangladeszu można mówić o tragicznej sytuacji. O ile bowiem np. w Tamizie najwyższa zanotowana koncentracja wszystkich antybiotyków wynosiła 233 nanogramy na litr, to w Bangladeszu była 170-krotnie wyższa.
      Najbardziej rozpowszechnionym antybiotykiem okazał się trimetoprym, który znaleziono w 307 z 711 monitorowanych miejsc. Jest on głównie wykorzystywany przy leczeniu infekcji dróg moczowych. Z kolei antybiotykiem, w przypadku którego najczęściej notowano przekroczenie bezpiecznych poziomów jest cyprofloksacyna.
      Badacze z University of York, którzy monitorowali rzeki, jako bezpieczne przyjęli poziomy opracowane ostatnio przez organizację AMR Industry Alliance. Uznaje ona, że – w zależności od antybiotyku – bezpieczny poziom może wahać się od 20 do 32 000 nanogramów na litr.
      Do przekroczenia poziomów bezpieczeństwa najczęściej dochodziło w rzekach Azji i Afryki, jednak i w Europie i obu Amerykach notowano wysokie poziom, co pokazuje, że zanieczyszczenie antybiotykami to problem globalny. Największe zanieczyszczenie tymi substancjami występuje w Bangladeszu, Kenii, Ghanie, Pakistanie i Nigerii. W Europie najbardziej zanieszyczone było jedno z monitorowanych miejsc w Austrii.
      Zwykle miejsca największych zanieczyszczeń znajdowały się blisko oczyszczalni ścieków, miejsc zrzucania ścieków oraz w pobliżu niestabilnych politycznie regionów, na przykład przy granicy Izraela z Autonomią Palestyńską.
      Doktor John Wilkinson zauważa, że dotychczas większość tego typu badań prowadzono w Europie, Ameryce Północnej i w Chinach, a zwykle poszukiwano kilku antybiotyków. Dopiero teraz można mówić, że mamy pewien zarys skali problemu.
      Zanieczyszczenie rzek antybiotykami to nie tylko problem dla środowiska naturalnego. Rzeki są źródłem wody pitnej dla ludzi i zwierząt, dostarczają wodę dla rolnictwa. Antybiotyki je zanieczyszczające w końcu trafiają do naszych organizmów i przyczyniają się do rosnącego problemu z antybiotykoopornością. Przez nią zaś coraz więcej chorób zakaźnych staje się opornych na dostępne leki i coraz bardziej realny staje się scenariusz, że ludzie będą umierali na choroby, które jeszcze kilkadziesiąt lat temu były łatwe w leczeniu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...