Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Składnik konopi wspomaga antybiotyki w walce z bakteriami

Recommended Posts

Bakterie coraz częściej nabywają oporności na stosowane przez nas antybiotyki. Naukowcy z Uniwersytetu Południowej Danii zauważyli, że składnik konopi siewnych, kannabidiol (CBD), wspomaga działanie antybiotyków. To już kolejne badania wskazujące, że CBD może być skuteczny w walce z infekcjami bakteryjnymi.

Problem antybiotykooporności narasta na całym świecie i naukowcy od lat alarmują, że jeśli nic się nie zmieni i nie będziemy w stanie opracowywać coraz to nowszych skuteczniejszych antybiotyków, to w przyszłości ludzie mogą zacząć umierać na choroby, które od dziesięcioleci nie stanowią dla nas zagrożenia.

Dlatego tez trwają prace nie tylko nad nowymi antybiotykami, ale też nad składnikami wspomagającymi ich działanie. Jednym z takich składników może być kannabidiol.

Janne Kudsk Klitgaard i Claes Sondergaard Wassmann informują na łamach Scientific Reports o wynikach swoich badań. Gdy zastosowali oni CBD wraz z antybiotykami zauważyli, że takie połączenie bardziej efektywnie zwalcza bakterie niż same antybiotyki. Potrzebowaliśmy mniej antybiotyku by zabić daną liczbę bakterii, mówią naukowcy.

Podczas badań CBD zostało użyte do wzmocnienia działania bacytracyny przeciwko bakteriom Gram-dodatnim. Okazało się, że składnik konopii wspomaga zwalczanie metycylinoopornego gronkowca złocistego (MRSA), Enterococcus faecalis, Listeria monocytogenes oraz metycyliooporny Staphylococcus epidermidis. Kombinacja taka nie działa jednak na bakterie Gram-ujemne.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wykorzystywana w średniowieczu mikstura - balsam oczny Balda (ang. Bald's eyesalve) - może znaleźć zastosowanie we współczesnej terapii. Naukowcy z Uniwersytetu w Warwick wykazali, że jest on skuteczny wobec szeregu patogenów Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych, a także wobec 5 bakterii hodowanych w formie biofilmu.
      Bald's eyesalve opisano w staroangielskim (IX-w.) podręczniku medycznym Bald's Leechbook (zwanym także Medicinale Anglicum). Miksturę stosowano na jęczmień - torbielowatą infekcję powieki. Przyrządzano ją z czosnku, dodatkowej rośliny z rodzaju Allium (czosnek), np. cebuli lub pora, wina i krowich kwasów żółciowych. Zgodnie z recepturą, po zmieszaniu, a przed użyciem składniki muszą stać przez 9 nocy w mosiężnym naczyniu.
      Pięć lat temu naukowcy z Uniwersytetu w Nottingham wykorzystali Bald's eyesalve do walki z metycylinoopornym gronkowcem złocistym (MRSA). Opierając się na ich badaniach, zespół z Warwick ustalił, że Bald's eyesalve wykazuje obiecujące działanie antybakteryjne i tylko w niewielkim stopniu szkodzi ludzkim komórkom.
      Mikstura była skuteczna przeciw szeregowi bakterii Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych. Aktywność utrzymywała się także przeciwko 5 bakteriom hodowanym w postaci biofilmu: 1) Acinetobacter baumannii, 2) Stenotrophomonas maltophilia, 3) gronkowcowi złocistemu (Staphylococcus aureus), 4) Staphylococcus epidermidis i 5) Streptococcus pyogenes.
      Bakterie te można znaleźć w biofilmach infekujących cukrzycowe owrzodzenie stopy (tutaj zaś, jak wiadomo, sporym problemem może być lekooporność).
      Jak wyjaśniają naukowcy, w skład balsamu ocznego Balda wchodzi czosnek, a ten zawiera allicynę (fitoncyd o działaniu bakteriobójczym). W ten sposób można by wyjaśnić aktywność mikstury wobec hodowli planktonowych. Sam czosnek nie wykazuje jednak aktywności wobec biofilmów, dlatego antybiofilmowego działania Bald's eyesalve nie da się przypisać pojedynczemu składnikowi. By osiągnąć pełną aktywność, konieczne jest ich połączenie.
      Wykazaliśmy, że średniowieczna mikstura przygotowywana z cebuli, wina i kwasów żółciowych może zabić całą gamę problematycznych bakterii, hodowanych zarówno w formie planktonowej, jak i biofilmu. Ponieważ mikstura nie powoduje większych uszkodzeń ludzkich komórek i nie szkodzi myszom, potencjalnie moglibyśmy opracować z tego środka bezpieczny i skuteczny lek antybakteryjny - podkreśla dr Freya Harrison.
      Większość wykorzystywanych współcześnie antybiotyków pochodzi od naturalnych substancji, ale nasze badania unaoczniają, że pod kątem terapii zakażeń związanych z biofilmem należy eksplorować nie tylko pojedyncze związki, ale i mieszaniny naturalnych produktów.
      Szczegółowe wyniki badań opublikowano w piśmie Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Związek z liści pięknotki amerykańskiej (Callicarpa americana) wzmacnia aktywność antybiotyków wobec lekoopornych gronkowców. Eksperymenty laboratoryjne wykazały, że w połączeniu z oksacyliną substancja ta niweczy lekooporność metycylinoopornych gronkowców złocistych (ang. methicillin-resistant Staphylococcus aureus, MRSA).
      Pięknotka amerykańska to krzew pochodzący z południowych USA. Jest wykorzystywana w ogrodnictwie jako roślina ozdobna.
      Zdecydowaliśmy się zbadać właściwości chemiczne pięknotki amerykańskiej, ponieważ była ona ważną rośliną leczniczą Indian - podkreśla prof. Cassandra Quave z Emory University.
      Alibamu, Czoktawowie, Krikowie, Koasati czy Seminole wykorzystywali pięknotkę do różnych celów leczniczych. Liście i inne części rośliny gotowano do zastosowania w parówkach; w ten sposób zwalczano np. reumatyzm. Z gotowanych korzeni przygotowywano leki na zawroty głowy, bóle brzucha i zatrzymanie moczu. Z kory z pędów uzyskiwano natomiast miksturę na świąd.
      Poprzednie badania wykazały, że ekstrakty z liści pięknotki odstraszają komary i kleszcze. Wcześniejsze studium zespołu Quave zademonstrowało, że wyciągi z liści hamują wzrost bakterii powodujących trądzik. Tym razem Amerykanie skupili się na testowaniu ekstraktów z liści pod kątem skuteczności wobec MRSA.
      Nawet pojedyncza tkanka roślinna może zawierać setki unikatowych cząsteczek. Ich chemiczne rozdzielenie to mozolny proces. Później przychodzi kolej na testy i ich powtarzanie, by wreszcie znaleźć tę skuteczną.
      Autorzy publikacji z pisma Infectious Diseases odkryli związek, który lekko hamował wzrost MRSA. Należy on do diterpenów typu klerodanu. Ponieważ substancja tylko lekko hamowała MRSA, naukowcy wypróbowali ją w połączeniu z antybiotykami beta-laktamowymi.
      Antybiotyki beta-laktamowe są jednymi z najbezpieczniejszych i najmniej toksycznych w obecnie dostępnym arsenale leków. Niestety, MRSA rozwinęło oporność na nie.
      Testy laboratoryjne wykazały, że związek z liści pięknotki działa synergicznie z oksacyliną, znosząc lekooporność MRSA.
      Kolejnym krokiem będzie przebadanie połączenia ekstraktu i antybiotyku na modelach zwierzęcych. Jeśli wyniki pokażą, że takie połączenie zwalcza zakażenia metycylinoopornym gronkowcem złocistym, naukowcy będą syntetyzować diterpen w laboratorium, żeby poprawić jego budowę chemiczną i w ten sposób zwiększyć skuteczność terapii skojarzonej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chcielibyście wiedzieć, jaka kombinacja antybiotyków najlepiej zadziała na konkretnego pacjenta? I znaleźć ją w 12, a może nawet w 6 godzin, na miejscu? A może marzy się wam przeszukiwanie tysięcy próbek naraz w poszukiwaniu swoistych przeciwciał? To wszystko umożliwia nowy chip stworzony przez naukowców z IChF PAN. Jest tani, szybki i wiarygodny. Może zastąpić szybkie testy immunochromatograficzne i daje pacjentom większe szanse na pokonanie zakażenia.
      Nowe narzędzie diagnostyczne tworzy zespół pod kierunkiem prof. Piotra Garsteckiego. W pracy opublikowanej w Micromachines badacze wykazali, że połączenie kilku różnych, prostych metod pozwala stworzyć przyjazny użytkownikom zestaw do badania wrażliwości bakterii na antybiotyki. Nowy chip wykorzystuje mniej odczynników i antybiotyków niż standardowy antybiogram na agarowej pożywce, a jego użycie jest tak proste jak Etestu. Użytkownik może też wybrać sposób wizualizacji wyników, np. wykorzystując metaboliczne wskaźniki obecności bakterii, barwniki fluorescencyjne albo efekt kolorymetryczny.
      Chcieliśmy zbadać antybiotykowrażliwość najprościej, jak tylko się da, nie tylko dla pojedynczej substancji bakteriobójczej, ale także dla ich kombinacji albo w różnych warunkach - wyjaśnia dr Ladislav Derzsi, jeden z autorów pracy nadzorujący projekt. By stworzyć nasz chip, połączyliśmy kilka rzeczy odkrytych zupełnie niezależnie. Wykorzystaliśmy np. standardowe techniki fotolitografii i litografii tworzyw sztucznych, powszechnie używane do produkcji tzw. laboratoriów chipowych (LOC), i połączyliśmy je z techniką druku bezkontaktowego na specjalnie dla nas zaprojektowanej maszynie. Dzięki połączeniu tych metod naukowcy są w stanie precyzyjnie zakraplać mikroskopijne ilości dowolnej cieczy w mikrodołki chipu na podobnej zasadzie, jak działają drukarki atramentowe lub laserowe. W prezentowanym badaniu zakraplane były roztwory antybiotyków w różnym stężeniu i różnych kombinacjach. Drukarki mają maleńkie dysze i wykorzystując siły piezoelektryczne, potrafią precyzyjnie dostarczać w żądany punkt określoną objętość atramentu: nanolitry, pikolitry, ba, nawet femtolitry - mówi dr Derzsi. My robimy podobnie, tyle że zamiast atramentu dostarczamy antybiotyki i nie na papier, lecz do mikrodołków z plastycznego elastomeru. Rozpuszczalnik, czyli woda, odparowuje, a to, co zostaje, to mikroskopijna dawka antybiotyku. W opisywanym badaniu mikrodołki były stosunkowo duże, miały 1 mm średnicy i pojemność ok. 0,67 mikrolitra. Na każdym chipie umieściliśmy 1024 takie celki. To o rząd wielkości więcej niż na standardowych płytkach, które mają 96 dołków i to mimo że nasza konstrukcja jest o połowę mniejsza. Co więcej, zmniejszając indywidualne rozmiary każdej celki, liczbę mikrodołków można zwiększyć nawet do 10000 na standardowych rozmiarów chip - dodaje naukowiec.
      By ułatwić korzystanie z nowej metody, badacze owijają chipy taśmą polimerową, by odciąć dostęp powietrza, a następnie poddają je działaniu próżni. W ten sposób sprzęt jest dostarczany do końcowego użytkownika w postaci sterylnej, w podciśnieniu. W wersji komercyjnej zapewne dodatkowo pakowalibyśmy chipy próżniowo tak, jak to się robi z żywnością - wyjaśnia dr Derzsi. Użytkownik musi tylko odpakować płytkę, wprowadzić roztwór bakterii zwykłą, dostępną na rynku pipetą, a potem dodać niewielką ilość oleju, który rozdziela dołki i pomaga uniknąć ich krzyżowego skażenia. Później trzeba już tylko włożyć płytkę do cieplarki i... czekać na wynik. Po zadanym czasie można odczytać, jaka kombinacja antybiotyków i w jakich stężeniach działa najlepiej; innymi słowy, zobaczyć, gdzie bakterie rosną niechętnie lub wcale.
      Wielką zaletą nowego systemu diagnostycznego jest jego elastyczność. Można wytwarzać sterylne zestawy pod dyktando odbiorcy, z różnymi antybiotykami w różnych kombinacjach. My badaliśmy na jednej płytce 6 pojedynczych antybiotyków w ośmiu różnych stężeniach i –  dla zwiększenia precyzji – w ośmiu powtórzeniach. Testowaliśmy też ich kombinacje, umieszczając w jednym mikrodołku po dwa z sześciu badanych antybiotyków i sprawdzając ich działanie w szeregu powtórzeń. Można zresztą badać połączenia wielu antybiotyków, inhibitorów i substancji pomocniczych, wstrzykując je do jednej celki w zadanych przez odbiorcę kombinacjach - mówi dr Derzsi - ale zwykle lekarze nie podają pacjentowi więcej niż dwóch, by nie przeciążać jego organizmu. Dzięki naszej metodzie mogą pobrać od chorego próbkę i sprawdzić, który antybiotyk lub jakie ich połączenie zadziała optymalnie w tym konkretnym przypadku, czyli zidywidualizować leczenie, zamiast polegać na statystycznych uogólnieniach. A przecież każdy z nas reaguje na terapię nieco inaczej, nawet jeśli chorobę wywołały te same mikroby. Chodzi o mikroflorę, indywidualną zmienność metabolizmu i wiele innych czynników. Można zatem powiedzieć, że opracowana w IChF PAN metoda to krok przybliżający nas w stronę medycyny spersonalizowanej. Z drugiej strony, to wielka pomoc nie tylko dla klinicystów, ale i dla badaczy próbujących znaleźć nowe, nieoczywiste połączenia antybiotykowe, które działałyby lepiej od tych powszechnie znanych.
      Choć praca zespołu prof. Garsteckiego skupiała się na antybiotykowrażliwości bakterii, sama metoda ma potencjał, by po wprowadzeniu pewnych zmian można ją było wykorzystywać także np. do identyfikacji swoistych genów albo przeciwciał. Zwłaszcza że byłoby to ekonomiczne. Pojedyncza płytka nie powinna kosztować więcej niż 5 euro. Metody mikrofluidyczne mają jeszcze jedną zaletę: poszukując nowych leków, naukowcy często mają do dyspozycji bardzo ograniczoną liczbę potencjalnie leczniczych substancji. Dzięki drukowi bezkontaktowemu mogą przetestować więcej różnych stężeń i kombinacji takich leków in spe, zanim zabraknie im substratu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa aktywowana światłem powłoka, zabija bakterie takie jak gronkowiec złocisty i Escherichia coli. Twórcami powłoki, która może znacznie zmniejszyć liczbę zakażeń szpitalnych są naukowcy z University College London. Powłokę można zastosować wewnątrz cewników czy rurek wentylacyjnych, które są ważnymi źródłami zakażeń szpitalnych.
      Zakażenia szpitalne to bardzo poważny problem na całym świecie. Ocenia się, że w Polsce nawet 10% pacjentów jest narażonych na zakażenia szpitalne, a bezpośrednie koszty ich leczenia to około 800 milionów złotych rocznie. W UE z powodu zakażeń szpitalnych umiera około 40 000 osób w ciągu roku.
      Zakażenia te najczęściej powodowane są przez Clostridioides difficile, metycylinoopornego gronkowca złocistego (MRSA) oraz E. coli. Teraz z Nature Communications dowiadujemy się o powstaniu powłoki antybakteryjnej, która jest aktywowana światłem o natężeniu zaledwie 300 luksów. Takie światło spotyka się w poczekalniach i innych tego typu pomieszczeniach szpitalnych.
      Opracowanie nowej powłoki oznacza, że można pokryć nią ściany i pozbyć się w ten sposób bakterii. Podobne istniejące dotychczas powłoki wymagały do aktywacji światła o natężeniu 3000 luksów. To bardzo intensywne światło, spotykane na salach operacyjnych.
      Nowa bakteriobójcza powłoka zbudowana jest z niewielkich fragmentów zmodyfikowanego złota zamkniętego w polimerze pokrytym fioletem krystalicznym, który ma właściwości grzybo- i bakteriobójcze.
      Barwniki takie jak fiolet krystaliczny to obiecujący kandydaci do utrzymywania sterylnych powierzchni. Są obecnie szeroko stosowane do odkażania ran. Gdy zostają wystawione na działanie światła wytwarzają reaktywne formy tlenu, które zabijają bakterie uszkadzając ich błony komórkowe i DNA. Połączenie tych barwników z metalami takimi jak złoto, srebro czy tlenek cynku wzmacnia efekt bakteriobójczy, mówi główny autor badań, doktor Gi Byoung Hwang
      Inne powłoki zabijające bakterie wymagają albo zastosowania światła ultrafioletowego, które jest niebezpieczne dla człowieka, albo bardzo intensywnego źródła światła, co nie jest zbyt praktyczne. Zaskoczyło nas, że nasza powłoka skutecznie zwalcza gronkowca złocistego i E. coli w warunkach naturalnego oświetlenia. Jest więc bardzo obiecującym materiałem, który można by stosować w służbie zdrowia, dodaje współautor badań, profesor Ivan Parkin.
      W ramach eksperymentów naukowcy nakładali na nową powłokę oraz na powłokę kontrolną kolonie bakterii w ilości 100 000 sztuk na mililitr. Eksperymenty prowadzono z użyciem gronkowca złocistego oraz E. coli. Porównywano ilość bakterii w ciemności oraz w oświetleniu o intensywności od 200 do 429 luksów.
      Okazało się, że powłoka kontrolna, składająca się z samego polimeru i fioletu krystalicznego nie zabijała bakterii w warunkach naturalnego oświetlenia. Tymczasem powłoka antybakteryjna znacząco wpłynęła na zmniejszenie rozprzestrzeniania się bakterii.
      E. coli była bardziej odporna na jej działanie niż S. aureus. Do znacznej redukcji liczby E. coli doszło po dłuższym czasie. Prawdopodobnie dzieje się tak, gdyż ściana komórkowa E. coli zbudowana jest z podwójnej membrany, a S. aureus z pojedynczej, wyjaśnia doktor Elaine Allan.
      Ku zdumieniu naukowców okazało się, że powłoka antybakteryjna wytwarza nadtlenek wodoru, który wchodzi w skład wody utlenionej. Działa on bezpośrednio na ścianę komórkową, zatem wolniej niszczy bakterie o grubszej ścianie. Obecne w naszej powłoce złoto jest kluczem do powstawania nadtlenku wodoru. Jako, że nasza powłoka wymaga zastosowania znacznie mniejszej ilości złota niż podobne powłoki, jest ona też tańsza, zapewnia kolejny z autorów badań, profesor Asterios Gavriilidis.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytmy do maszynowego uczenia się pozwoliły specjalistom z MIT zidentyfikować nowe potężne antybiotyki. Podczas testów laboratoryjnych nowe związki zabiły jedne z najtrudniejszych w zwalczaniu bakterii chorobotwórczych, w tym szczepy oporne na działanie wszystkich znanych antybiotyków. Jakby tego było mało, umożliwiły one zwalczenie infekcji w dwóch różnych mysich modelach chorób.
      Naukowcy wykorzystali model komputerowy, który pozwala na przeanalizowanie w ciągu zaledwie kilku dni działania setek milionów związków chemicznych. Taka analiza pozwala na wybór do dalszych badań najbardziej obiecujących środków. Uczeni szukają związków, które zabijają bakterie w inny sposób, niż obecnie znane antybiotyki.
      Chcieliśmy stworzyć platformę, która pozwoliłaby nam na wykorzystanie sztucznej inteligencji do zapoczątkowania nowej epoki w odkrywaniu antybiotyków. Dzięki takiemu podejściu natrafiliśmy na zadziwiającą molekułę, która jest jednym z najpotężniejszych znanych antybiotyków, mówi profesor James Collins z MIT.
      Przy okazji zidentyfikowano wiele innych obiecujących kandydatów na antybiotyki. Substancje te dopiero będą testowane. Uczeni uważają, że ich model można wykorzystać również do projektowania nowych leków.
      Model maszynowego uczenia się pozwala nam masowo badać związki chemiczne. Przeprowadzenie takich badań w laboratorium byłoby niemożliwe ze względu na koszty, dodaje Regina Barzilay z Computer Science and Artificial Intelligencje Laboratory (CSAIL) na MIT.
      Przez ostatnich kilkadziesiąt lat wynaleziono niewiele nowych antybiotyków, a większość z tych nowych to lekko istniejące wersje wcześniej istniejących. Obecnie wykorzystywane metody badania związków chemicznych pod kątem ich przydatności do produkcji antybiotyków są niezwykle kosztowne, wymagają dużo czasu i zwykle pozwalają zbadać wąską grupę mało zróżnicowanych środków.
      Stoimy w obliczu rosnącej antybiotykooporności. Z jednej strony problem ten spowodowany jest coraz większą liczbą antybiotykoopornych patogenów, a z drugiej – powolnym postępem na tym polu, mówi Collins. Coraz częściej pojawiają się głosy, że ludzie mogą zacząć umierać na choroby zakaźne, na które nie umierali od dziesięcioleci. Dlatego też niezwykle pilnym zadaniem jest znalezienie nowych antybiotyków. Niedawno informowaliśmy o odkryciu antybiotyków, które zabijają bakterie w niespotykany dotąd sposób.
      Pomysł wykorzystania komputerów do identyfikowania potencjalnych antybiotyków nie jest nowy, dotychczas jednak obliczenia takie były albo niezwykle czasochłonne, albo niedokładne. Nowe sieci neuronowe znacznie skracają czas obliczeń.
      Naukowcy z MIT dostosowali swój model obliczeniowy tak, by poszukiwał związków chemicznych mogących być zabójczymi dla E. coli. Swój model trenowali na około 2500 molekuł, w tym na około 1700 lekach zatwierdzonych przez FDA i około 800 naturalnych produktach o zróżnicowanych strukturach i działaniu.
      Po zakończonym treningu sieć neuronowa została przetestowana na należącej do Broad Institute bazie Drug Repository Hub, która zawiera około 6000 związków. Algorytm znalazł tam molekułę, która miała strukturę inną od wszystkich istniejących antybiotyków i o której sądził, że będzie wykazywała silne działanie antybakteryjne. Naukowcy najpierw poddali tę molekułę badaniom za pomocą innego modelu maszynowego i stwierdzili, że prawdopodobnie jest ona mało toksyczna dla ludzi.
      Halicyna, bo tak nazwano tę molekułę, była w przeszłości badana pod kątem jej przydatności w leczeniu cukrzycy. Teraz naukowcy przetestowali ją na dziesiątkach szczepów bakterii pobranych od ludzi. Okazało się, że zabija ona wiele antybiotykoopornych patogenów, w tym Clostridium difficile, Acinetobacter bumannii czy Mycobacterium turebculosis. Jedynym patogenem, który oparł się jej działaniu była Pseudomonas aeruginosa, powodująca trudne w leczeniu choroby płuc.
      Po pomyślnych testach in vitro rozpoczęto badania na zwierzętach. Halicynę użyto do leczenia myszy zarażonej wcześniej opornym na działanie wszystkich znanych antybiotyków szczepem A. baumannii. Halicyna w ciągu 24 godzin zwalczyła infekcję u zwierząt.
      Wstępne badania sugerują, że nowy antybiotyk działa poprzez zaburzanie u bakterii możliwości utrzymania gradientu elektrochemicznego w błonie komórkowej. Gradient ten jest niezbędny m.in. do wytwarzania molekuły ATP, niezbędnego nośnika energii. Bakterie pozbawione ATP giną. Naukowcy uważają, że bakteriom będzie bardzo trudno nabyć oporność na taki sposób działania antybiotyku.
      Podczas obecnych badań uczeni stwierdzili, że w ciągu 30 dni leczenia u E. coli w ogóle nie rozwinęła się oporność na halicynę. Tymczasem np. oporność na cyprofloksacynę zaczyna się u E. coli rozwijać w ciągu 1-3 dni od podania, a po 30 dniach bakteria jest 200-krotnie bardziej oporn działanie tego środka.
      Po zidentyfikowaniu halicyny naukowcy wykorzystali swój model do przeanalizowania ponad 100 milionów molekuł wybranych z bazy ZINC15, w której znajduje się około 1,5 miliarda molekuł. Analiza trwała trzy doby, a sztuczna inteligencja znalazła 23 molekuły, które są niepodobne do żadnego istniejącego antybiotyku i nie powinny być toksyczne dla ludzi. Podczas testów in vitro stwierdzono, że 8 z tych molekuł wykazuje właściwości antybakteryjne, z czego 2 są szczególnie silne. Uczeni planują dalsze badania tych molekuł oraz analizę pozostałych związków z ZINC15.
      Naukowcy planują dalsze udoskonalanie swojego modelu. Chcą np. by poszukiwał on związków zdolnych do zabicia konkretnego gatunku bakterii, a oszczędzenia bakterii korzystnych dla ludzi.

      « powrót do artykułu
×
×
  • Create New...