Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Robotyczna nić pozwoli na zdalne leczenie udarów

Recommended Posts

Na MIT powstał sterowany za pomocą pola magnetycznego robot podobny do nici, który może przemieszczać się w wąskich poskręcanych naczyniach krwionośnych, np. w naczyniach w mózgu. W przyszłości tego typu roboty, po połączeniu z innymi dostępnymi technologiami, mogą zostać użyte do szybkiego leczenia zatorów cy uszkodzeń w mózgu.

Udar mózgu jest obecnie piątą przyczyną śmierci i główną przyczyną niepełnosprawności w USA. Jeśli leczenie ostrego udaru rozpocznie się w ciągu pierwszych 90 minut, to szanse pacjenta na przeżycie znacząco rosną, mówi profesor Xuanhe Zhao. Jeśli mielibyśmy urządzenie, które pozwoliłoby na usunięcie zatoru w ciągu tej „złotej godziny”, moglibyśmy potencjalnie uniknąć uszkodzenia mózgu. Z taką właśnie nadzieją pracujemy.

Obecnie w celu usunięcia zatoru w mózgu zwykle przeprowadza się procedurę polegającą na wprowadzeniu do tętnicy udowej cewnika, który dociera do mózgu. Później wykorzystywany jest jeszcze stent, za pomocą którego usuwa się skrzep.

To długotrwała procedura, wymagająca obecności specjalnie przeszkolonego chirurga, który ponadto otrzymuje podczas niej dawkę promieniowania, służącego do obrazowania przebiegu operacji. To wymagający zabieg. Nie ma wystarczająco dużo chirurgów, którzy potrafią go wykonać. Szczególnie na terenach podmiejskich i wiejskich, mówi Yoonho Kim, jeden z autorów badań. Procedura wymaga ręcznego sterowania narzędziami, które wykonane są z metalu pokrytego polimerem. Ten z kolei może uszkadzać wyściółkę naczyń krwionośnych.

Zespół z MIT postanowił pójść inną drogą. Naukowcy przez ostatnie lata pogłębiali swoją wiedzę na temat hydrożeli oraz produkowanych technologią druku 3D materiałach sterowanych za pomocą pola magnetycznego. Teraz połączyli swoją wiedzę i stworzyli sterowaną magnetycznie pokrytą hydrożelem nić, którą podczas testów przeprowadzili przez dokładny model 1:1 naczyń krwionośnych mózgu.

Rdzeń robotycznej nici jest wykonany z nitinolu, czyli stopu niklu i tytanu. To materiał jednocześnie giętki i sprężysty. Został on pokryty specjalnym tuszem połączonym z nitinolem za pomocą cząstek magnetycznych, a całość pokryto hydrożelem, materiałem, który jest biokompatybilny, gładki, nie uszkadza naczyń krwionośnych i nie wpływa na reakcję leżących pod nim cząstek magnetycznych. Następnie za pomocą dużego magnesu wykazali, że są w stanie precyzyjnie sterować urządzeniem.
Stworzyli też silikonowy model naczyń krwionośnych mózgu, który wypełnili płynem o podobnej lepkości co krew, a następnie przeprowadzili swoją robotyczną nić przez naczynia.

Kim mówi, że ich nić można wyposażyć w różnego typu funkcje. Może ona np. dostarczać do miejsca zatoru leki rozpuszczające zakrzep czy rozbijać go za pomocą lasera. Na potrzeby badań uczeni zastąpili nitinol światłowodem i wykazali, że są taki robot również może dotrzeć do miejsca zakrzepu, a oni są w stanie aktywować laser na żądanie.

Przeprowadzono też porównanie robotycznej nici pokrytej i niepokrytej hydrożelem. Okazało się, że żel ułatwiał przemieszczanie się i zapobiegał utknięciu nici w wąskich naczyniach.

Jednym z wyzwań chirurgii jest nawigowanie przez złożoną sieć naczyń krwionośnych mózgu, które mogą mieć taką średnicę, iż dostępne cewniki nie są w stanie tam dotrzeć. Te badania dają nadzieję na rozwiązanie tego problemu i przeprowadzenie operacji bez konieczności otwierania czaszki, mówi profesor Kyujin Cho, z Narodowego Uniwersytetu Seulskiego.

Kolejna dobra wiadomość jest taka, że skoro chirurg nie musi fizycznie popychać cewnika, gdyż nić jest sterowana za pomocą pola magnetycznego, nie musi on przebywać w sąsiedztwie źródła promieniowania wykorzystywanego do obrazowania przebiegu operacji. Już istniejące rozwiązania pozwalają na jednoczesne zastosowanie pola magnetycznego i fluoroskopii, więc lekarz może przebywać w innym pomieszczeniu, a nawet w innym mieście, kontrolując pole magnetyczne za pomocą dżojstika. Mamy nadzieję, że w kolejnym etapie badań będziemy mogli przetestować naszą technologię in vivo, cieszy się Kim.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Przydałby się w Polsce taki MIT. Co krok słyszy się o ich wynalazkach. Może AGH stanie w szranki? Jak uważasz co musiałoby mieć miejsce żeby Polska uczelnia mogła w ten sposób działać?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii udowodniono istnienie świadomych procesów u ptaków. Naukowcy z Uniwersytetu w Tybindze dokonali pomiarów sygnałów z mózgów krukowatych i wykazali, że zwierzęta te doświadczają subiektywnych doznań. Dzięki jednoczesnej rejestracji zachowania i fal mózgowych zespół profesora Andreasa Niedera wykazał, że krukowate świadomie przetwarzają bodźce.
      Dotychczas tego typu zjawiska obserwowano jedynie u ludzi i innych naczelnych, czyli u stworzeń o budowie mózgu całkowicie odmiennej niż u ptaków. Nasze badania to początek zupełnie nowego spojrzenie na ewolucję świadomości i związanych z nią procesów neurologicznych, mówi Nieder.
      U ludzi i naszych najbliższych krewnych świadome przetwarzanie sygnałów odbywa się w korze mózgowej. Od wielu lat trwała wśród specjalistów dyskusja, czy zwierzęta o zupełnie innej strukturze mózgu, nie posiadające kory mózgowej, posiadają świadomość. Dotychczas jednak nikt nie przeprowadził eksperymentów, które by wykazały istnienie takiej świadomości.
      Naukowcy z Tybingi wytresowali dwa kruki. Ptaki nauczono, by na widok stymulantu wyświetlanego na ekranie, poruszały głowami. Większość sygnałów była jednoznaczna. Podczas sesji zwierzętom pokazywano na ekranie albo jaskrawą figurę, albo nie wyświetlano niczego. Kruki zawsze prawidłowo sygnalizowało.
      Jednak czasem wyświetlano tak słaby stymulant, że był on na granicy percepcji. Wtedy okazywało się, że kruki czasem widział stymulant i sygnalizowały jego obecność, a czasem go nie widziały. To pokazuje, że ma u nich miejsce subiektywne postrzeganie rzeczywistości.
      Podczas badań naukowcy rejestrowali też aktywność indywidualnych komórek nerwowych w mózgu ptaków. Gdy kruki informowały, że coś widzą, komórki nerwowe w ich mózgach były aktywne pomiędzy pokazaniem stymulantu, a bahawioralnej reakcji u ptaków. Gdy ptak niczego nie widział, komórki nerwowe były nieaktywne. Co zaskakujące, możliwe było przewidzenie subiektywnej reakcji ptaków na podstawie aktywności komórek nerwowych. Należałoby się spodziewać, że komórki nerwowe, które po prostu reagują na bodziec wzrokowy, będą zawsze tak samo reagowały na bodźce o identycznej intensywności. Okazało się jednak, że komórki na wyższych poziomach przetwarzania sygnałów ulegają wpływowi czynników subiektywnych, zatem tworzą subiektywne doznania, stwierdzają naukowcy.
      Wyniki badań oznaczają, że świadomość jest znacznie starsza i bardziej rozpowszechniona w królestwie zwierząt, niż nam się wydaje. Ostatni wspólny przodek człowieka i krukowatych żył 320 milionów lat temu. Możliwe więc, że od tamtego czasu świadomość jest przekazywana kolejnym pokoleniom zwierząt, mówi Nieder. Alternatywnie można stwierdzić, że świadomość pojawiła się niezależnie u tak różnych gatunków jak ludzie i kruki. Niezależnie jednak od tego, widzimy, że świadomość może istnieć w mózgach o bardzo różnej budowie i niezależnie od istnienia kory mózgowej, dodaje uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcom udało się lepiej określić rolę snu w naszym życiu. Okazuje się, że w wieku około 30 miesięcy dochodzi do gwałtownego przemodelowania roli snu. Zmienia się ona z budowania mózgu na utrzymanie i naprawę.
      Naukowcy przeprowadzili analizę statystyczną ponad 60 studiów dotyczących snu. Analizowali czas snu, czas fazy REM, rozmiar mózgu i ciała. Na tej podstawie opracowali matematyczny model zmian snu w czasie rozwoju.
      Generalnie rzecz ujmując, istnieją dwie fazy snu. REM, charakteryzująca się szybkimi ruchami oczu, to głęboki sen podczas których śnimy. Oraz faza NREM, podczas której ruchy gałek ocznych są wolne. W tej fazie sny pojawiają się rzadko.
      Podczas fazy REM mózg tworzy nowe połączenia, budując i wzmacniając synapsy. W czasie snu móg jest też naprawiany i oczyszczany z produktów ubocznych, które nagromadziły się w czasie dnia.
      Analiza wykazała, że w wieku około 30 miesięcy dochodzi do fundamentalnej zmiany. Zamiast tworzyć i przecinać połączenia w czasie fazy REM, mózg skupia się głównie na naprawie. Zarówno w czasie fazy REM jak i NREM.
      Odkrycie, że ta zmiana jest tak radykalna i zachodzi jak za naciśnięciem przełącznika, było dla nas szokujące, przyznaje profesor biologii ewolucyjnej i medycyny obliczeniowej Van Savage z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA).
      Długość fazy REM zmniejsza się z wiekiem. U niemowląt, które śpią po 16 godzin na dobę, faza REM trwa przez około 50% czasu. Jednak w wieku około 30 miesięcy dochodzi do znacznego spadku długości fazy REM. Do wieku 10 lat REM zajmuje tylko 25% czasu snu, a do wieku 50 lat jest to 10–15 procent.
      Sen jest czymś powszechnym u zwierząt. Niemal tak oczywistym jak oddychanie i jedzenie. Powiedziałbym, że to jeden z filarów ludzkiego zdrowia, stwierdza Van Savage.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Elon Musk ogłosił przełom w dziedzinie synchronizacji ludzkiego mózgu ze sztuczną inteligencją. Podczas pokazu na żywo Musk zaprezentował układ scalony zbudowany przez jego firmę Neuralink. To w pełni samodzielny implant mózgowy, który bezprzewodowo przesyła informacje o aktywności mózgu, nie wymagając przy tym żadnego zewnętrznego sprzętu. Działanie chipa zaprezentowano na przykładzie żywej świni.
      Uczestnicy pokazu mogli zobaczyć grupę świń, z których jedna miała wszczepiony implant. Ekran nad nią na bieżąco pokazywał i rejestrował aktywność jej mózgu. Dotychczas by zarejestrować działanie mózgu konieczne było podłączenie badanej osoby lub zwierzęcia do zewnętrznego urządzenia, np. elektroencefalografu (EEG).
      Celem Muska jest stworzenie implantu mózgowego, który bezprzewodowo połączy ludzki mózg ze sztuczną inteligencją i pozwoli na kontrolowanie komputerów, protez i innych maszyn jedynie za pomocą myśli. Implant może służyć też rozrywce. Za jego pomocą będzie bowiem można kontrolować gry.
      Musk chce stworzyć implant, który będzie rejestrował i zapisywał aktywność milionów neuronów, przekładając ludzkie myśli na polecenia dla komputera i odwrotnie. Wszystko to miało by się odbywać za pomocą niewielkiego wszczepialnego implantu.
      Prace nad implantem pozwalającym na stworzenie interfejsu mózg-komputer trwają od ponad 15 lat. Ich celem jest umożliwienie normalnego funkcjonowania ludziom z chorobami neurologicznymi czy paraliżem. Badania bardzo powoli posuwają się naprzód. Od 2003 w USA implanty mózgowe wszczepiono mniej niż 20 osobom. Wszystkie dla celów badawczych. Większość z takich systemów posiada jednak części, które wystają poza organizm, umożliwiając w ten sposób zasilanie i transmisję danych. Takie zewnętrzne części to ryzyko infekcji. Są ponadto niepraktyczne.
      Neuralink twierdzi, że jej układ jest najbardziej zaawansowany z dotychczasowych. Zawiera procesor, nadajnik bluetooth, akumulator oraz tysiące elektrod. Każda z tych elektrod rejestruje aktywność do 4 neuronów.
      Bolu Ajiboye, profesor inżynierii biomedycznej z Case Western Reserve Univeristy, który jest głównym naukowcem konsorcjum BrainGate pracującym nad implantami dla pacjentów neurologicznych, mówi, że jeśli chip Muska będzie przez dłuższy czas umożliwiał bezprzewodową transmisję danych, to mamy do czynienia dużym postępem na tym polu. W Neuralinku pracują mądrzy ludzie prezentujący innowacyjne podejście. Wiem, co oni tam robią i z niecierpliwością czekam na wyniki, stwierdza uczony.
      Na razie jednak osiągnięcia Neuralink znamy z prezentacji, a nie z recenzowanych artykułów. Nie wiemy na przykład, a jaki sposób urządzenie transmituje tak dużą ilość danych bez generowania uszkadzającego mózg ciepła. Ponadto, jak zauważa Ajiboye, urządzenie jest dość duże jak na implant mózgowy. Jest to bowiem cylinder o średnicy 23 i długości 8 mm. Tymczasem urządzenie, które obecnie testuje BrainGate ma wymiary 4x4 mm. Zawiera też element wystający przez czaszkę oraz 100 elektrod. Tymczasem urządzenie Neuralinka korzysta z 1000 elektrod.
      Podczas pokazu z udziałem Muska wykorzystano trzy świnie, z których jedna – imieniem Gertruda – miała wszczepiony implant. Widać było, że za każdym razem gdy Gertruda węszy, zwiększała się aktywność elektryczna jej mózgu.
      Jednak rejestracja danych to nie wszystko. Najważniejsze jest ich dekodowanie. Wiele laboratoriów na całym świecie poświęciło wiele czasu na opracowywanie algorytmów mających na celu interpretację sygnałów z mózgu. Neuralink nam tego nie zaprezentował, mówi Ajiboye.
      Pierwsze implanty Neuralinka mają mieć zastosowanie medyczne. Mogą np. trafić do ludzi z uszkodzonym rdzeniem kręgowym. Jednak Elon Musk stwierdził, że w przyszłości chce wyjść poza zastosowania medyczne. Słowa te wywołały duże poruszenie w mediach. Jako naukowcy specjalizujący się w dość szczególnej dziedzinie musimy być odpowiedzialni za słowa, ważyć obietnice jakie składamy i uważać na to, co opowiadamy o naszej technologii. Gdy pojawił się Elon Musk nasze prace przyciągnęły uwagę mediów. To dobrze, jednak rodzi to też wyzwania. A jednym z takich wyzwań jest odróżnienie propagandy od rzeczywistości.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Świetny węch może być nie jedyną niezwykłą cechów psów. Najnowsze badania wskazują, że zwierzęta te mogą też wykorzystywać ziemskie pole magnetyczne do wyszukiwania skrótów w nieznanym sobie terenie. To pierwsza tego typu sugestia dotycząca psów, zauważa Catherine Lohmann, biolog z University of North Carolina, która specjalizuje się w badaniu magnetorecepcji i systemu nawigacyjnego żółwi.
      Uczona przypomina, że psy – w porównaniu np. z gatunkami migrującymi – rzadko są badane pod kątem ich zdolności do nawigowania w terenie. To daje nam wgląd w to, w jaki sposób psy tworzą obraz otaczającej ich przestrzeni, stwierdza Richard Holland z Bangor University, badający nawigację ptaków.
      Już wcześniej pojawiały się pewne sugestie, że psy mogą wyczuwać pole magnetyczne naszej planety. W 2013 roku Hynek Burda z praskiego Uniwersytetu Nauk Przyrodniczych, który od 30 lat bada zjawisko magnetorecepcji, informował, że psy podczas wydalania zwykle ustawiają sie w linii północ-południe. Burda spekulował, że skoro odchody służą psom do znakowania i rozpoznawania terytorium, to takie ustawienie pozwala im określić lokalizację względem innych punktów w przestrzeni. Jednak statyczne określenie się w przestrzeni jest czymś zupełnie innymi niż nawigacja.
      Autorką najnowszych badań jest doktorantka Burdy, Kateřina Benediktová. Młoda uczona przyczepiła czterem psom nadajniki GPS oraz kamera i zabierała je na spacery po lesie. Do eksperymentów wybrała psy, które lubiły tropić dziką zwierzynę. Gdy pies wyczuł zwierzę śledził je po śladach średnio przez 400 metrów. Benediktovą interesowały zaś strategie, jakie psy wybierały podczas powrotu do niej. Zauważyła, że zwierzęta korzystają z dwóch strategii. Pierwsza z nich to powrót tą samą droga. Niewykluczone, że pies podążał z powrotem po tym samym śladzie zapachowym, po którym tropił zwierzynę. Druga ze strategii, nazwana przez uczoną „zwiadem”, polegała na tym, że pies wracał całkowicie nową drogą, w ogóle nie idąc po wcześniejszym śladzie.
      Gdy Benediktova pokazała Burdzie swoje dane, ten zauważył coś interesującego. Okazało się, że mniej więcej w połowie trasy „zwiadu” psy zatrzymywały się i przez około 20 metrów biegły wzdłuż linii północ-południe. Następnie kontynuowały „zwiad”. Zachowanie to wyglądało tak, jakby psy ustalały swoje położenie względem linii pola magnetycznego. Jednak Benediktová miała zbyt mało danych, by to potwierdzić.
      Młoda uczona i jej promotor postanowili więc przeprowadzić większy eksperyment. Wykorzystali w nim 27 psów, z którymi na przestrzeni 3 lat odbyli setki wycieczek po lesie. Szczegółowo przeanalizowali 223 „zwiady” powrotne. W czasie każdego z nich pies średnio przebywał drogę 1,1 kilometra. W 170 przypadkach psy zatrzymywały się, obracały i przebiegały około 20 metrów wzdłuż linii północ-południe. Okazało się, że te psy, które wykonały taki manewr, zwykle wracały do właściciela krótszą drogą, niż te, które go nie wykonywały.
      Naukowcy starali się, by psy nie miały żadnych wskazówek odnośnie tego, gdzie się znajdują. Dlatego też starano się je zabierać do tych części lasu, w których jeszcze nie były. Ponadto, gdy tylko pies był spuszczany ze smyczy i zaczynał iść tropem zwierzyny, jego właściciel się chował, by powracające zwierzę go nie widziało. Zwierzęta nie mogły też orientować się na zapach, gdyż rzadko w czasie badań zdarzało się tak, by wiatr wiał od właściciela w stronę powracającego psa.
      Burda mówi, że najbardziej prawdopodobnym wyjaśnieniem zachowań psów jest to mówiące, że zwierzęta wykorzystują ziemskie pole magnetyczne, by zorientować się, gdzie są. Lohmann, która jest pod wrażeniem badań czeskich kolegów zauważa, że takie wyjaśnienie zakłada jednocześnie, iż zwierzęta pamiętają swoją poprzednią pozycję względem pola magnetycznego i później wykorzystują te dane, by znaleźć najkrótszą drogę do domu. Jestem zaintrygowana, przyznaje uczona.
      Adam Miklósi, specjalista od psiego zachowania z Eötvös Loránd University, mówi, że zaprojektowanie odpowiednich eksperymentów, by udowodnić psią magnetorecepcję, będzie niezwykle trudne. Trudno jest bowiem spowodować, by zwierzę mogło opierać się wyłącznie na tego typu danych. Problem w tym, że aby na 100% udowodnić istnienie magnetorecepcji czy jakiegokolwiek innego zmysłu, trzeba by wykluczyć wszystkie pozostałe zmysły, mówi.
      Burda i Benediktová już mają pomysł na kolejny interesujący eksperyment. Chcą przyczepić psom do obróż magnesy, które zakłócą lokalne pole magnetyczne. Uczeni mają zamiar sprawdzić, czy zaburzy to psom zdolność do nawigowania.
      Miklósi stwierdza, że ewentualne potwierdzenie magnetorecepcji u psów nie będzie zaskoczeniem. Wydaje się bowiem, że jest to zdolność, która pojawiła się na wczesnych etapach ewolucji i powinien posiadać ją każdy ssak, który odbywa dalekie podróże.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Chicago zauważyli, że mikrobiom jelit osób cierpiących na rzadką chorobę genetyczną powodującą krwawienia do mózgu, różni się od mikrobiomu osób, u których choroba ta nie występuje. Co więcej, stwierdzili, że to molekuła, powstająca w wyniku nierównowagi pomiędzy różnymi populacjami bakterii, powoduje uszkodzenia naczyń krwionośnych w mózgu.
      To prawdopodobnie pierwsze badania, które wykazały taką przyczynę jakiejkolwiek choroby naczyń krwionośnych układu nerwowego. Będą miały one olbrzymie znaczenie zarówno dla leczenia samej choroby, jak i dla badania innych chorób układu krwionośnego, które mogą być powodowane przez mikrobiom jelitowy.
      Naukowcy przyglądali się osobom, u których zdiagnozowano obecność naczyniaków jamistych ośrodkowego układu nerwowego (CA). U około 30–40% takich osób występują mutacje genetyczne, w wyniku których pojawiają się liczne naczyniaki w mózgu i rdzeniu kręgowym. U osób bez tych mutacji pojawiają się pojedyncze naczyniaki. Jednak nawet u osób z mutacjami częstotliwość występowania naczyniaków oraz przebieg choroby może znacząco się różnić. Od pewnego czasu pojawiały się hipotezy mówiące, że za różnicę w przebiegu choroby u osób z tymi samymi mutacjami czy za pojawianie się choroby u osób bez mutacji genetycznych może odpowiadać mikrobiom.
      Badania na myszach sugerowały rolę gram-ujemnych bakterii i zmienionej homeostazy jelitowej w patogenezie CA. Pilotażowe badania genetyczne wstępnie wykazały potencjalną różnicę w mikrobiomie pomiędzy osobami cierpiącymi na CA a osobami, u których schorzenie to nie występuje. Postanowiliśmy więc sprawdzić różnice w mikrobiomie na większej grupie ludzi. Porównaliśmy zarówno osoby z CA z osobami zdrowymi, jak i dokonaliśmy porównania pomiędzy osobami z CA o różnym przebiegu choroby, mówią autorzy badań.
      U pacjentów z CA stwierdziliśmy duże populacje różnych gatunków bakterii, których obecność była zgodna z postulowanym pojawianiem się uszkodzeń naczyń krwionośnych przez lipopolisacharydy (LPS) zarówno u ludzi jak i u myszy. Inne różnice mikrobiomu są powiązane z przebiegiem klinicznym CA. Na przebieg choroby oraz krwawienia do mózgu wpływa połączenie obu czynników – sygnatur mikrobiomu i biomarkerów prozapalnych, stwierdzają uczeni.
      Jeden z głównych autorów, profesor Issam Awad z University of Chicago Medicine, który brał też udział w badaniach na myszach, mówi, że już znaczącym odkryciem było samo stwierdzenie, iż wyściółka naczyń krwionośnych mózgu zwierząt reaguje na bakterie jelitowe. Nie wiedzieliśmy jednak, czy hipoteza mówiąca, że może istnieć mikrobiom, który predystynuje do pojawiania się uszkodzeń naczyń krwionośnych w mózgu będzie prawdziwa u ludzi.
      Żeby to sprawdzić uczeni z Chicago połączyli siły z naukowcami z University of California San Francisco, University of New Mexico, University of Pennsylvania oraz z grupą wsparcia pacjentów Angioma Alliance. Udało się uzyskać próbki kału od ponad 120 osób z CA.
      Analizy wykazały, że w mikrobiomach osób cierpiących na CA znajduje się znacznie więcej bakterii gram-ujemnych i mniej gram-dodatnich niż w całej populacji. Udało się też zidentyfikować kombinacje trzech powszechnie występujących gatunków bakterii, których relatywna obfitość względem siebie pozwala odróżnić osoby z CA od osób zdrowych. Okazało się również, że u pacjentów z CA występuje znacznie większa nierównowaga pomiędzy różnymi gatunkami bakterii.
      U pacjentów z CA widzimy ten sam wyróżniających ich mikrobiom. I różnica ta jest widoczna niezależnie od tego, czy są to pacjenci, którzy odziedziczyli niekorzystną mutację genetyczną czy osoby, u których występują pojedyncze naczyniaki. Jest to też niezależne od liczby naczyniaków, mówi Awad.
      Podczas szczegółowych badań stwierdzono, że brak równowagi pomiędzy różnymi gatunkami bakterii mikrobiomu powoduje pojawianie się lipopolisacharydów, które wraz z krwią docierają do mózgu, przyłączają się do wyściółki naczyń krwionośnych, ułatwiając tworzenie się uszkodzeń. Wszystkie dowody wskazują na to, że mikrobiom jest przyczyną uszkodzeń, dodaje Awad.
      Naukowcy pobrali krew od części pacjentów z CA i zastosowali zaawansowane modele maszynowego uczenia się do zidentyfikowania kombinacji sygnałów molekularnych powiązanych z chorobą. U osób z CA stwierdzono znaczną różnicę w biomarkerach wskazujących na obecność LPS i stanu zapalnego. W ten sposób de facto powstały też zindywidualizowane testy dla każdego z pacjentów z CA.
      Badając kombinacje populacji bakterii oraz biomarkerów w krwi byliśmy w stanie zmierzyć, na ile agresywna była choroba w przypadku każdego z pacjentów, wyjaśnia Sean Polster główny autor artykułu Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma.
      Naukowcy już zaczęli zastanawiać się, jak w praktyce wykorzystać wyniki swoich badań. Wcześniejsze badania na myszach wykazały, że zwierzęta spożywające emulgatory, które są częstym dodatkiem do żywności przetworzonej, doświadczały częstszych krwawień z mózgu. Prawdopodobną przyczyną było zaburzanie równowagi mikrobiomu przez emulgatory. Badacze zalecają więc, by osoby ze zdiagnozowanym CA unikali żywności z emulgatorami.
      Profesor Awad ostrzega też, że chociaż antybiotyki i probiotyki wydają się oczywistymi metodami leczenia nierównowagi mikrobiomu, to ich stosowanie może tak zmienić mikrobiom, iż spowoduje to jeszcze większe problemy. To bardziej skomplikowane, niż się wydaje, stwierdza. Uczony ma jeszcze jedną bardzo ważną poradę dla osób z CA. Jeśli doświadczą oni infekcji powodowanej przez bakterie gram-ujemne – takiej jak infekcja układu moczowego czy zapalenia prostaty – to powinni natychmiast ją leczyć, by uniknąć możliwych uszkodzeń naczyń krwionośnych mózgu.

      « powrót do artykułu
×
×
  • Create New...