Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' cewnik'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Na MIT powstał sterowany za pomocą pola magnetycznego robot podobny do nici, który może przemieszczać się w wąskich poskręcanych naczyniach krwionośnych, np. w naczyniach w mózgu. W przyszłości tego typu roboty, po połączeniu z innymi dostępnymi technologiami, mogą zostać użyte do szybkiego leczenia zatorów cy uszkodzeń w mózgu. Udar mózgu jest obecnie piątą przyczyną śmierci i główną przyczyną niepełnosprawności w USA. Jeśli leczenie ostrego udaru rozpocznie się w ciągu pierwszych 90 minut, to szanse pacjenta na przeżycie znacząco rosną, mówi profesor Xuanhe Zhao. Jeśli mielibyśmy urządzenie, które pozwoliłoby na usunięcie zatoru w ciągu tej „złotej godziny”, moglibyśmy potencjalnie uniknąć uszkodzenia mózgu. Z taką właśnie nadzieją pracujemy. Obecnie w celu usunięcia zatoru w mózgu zwykle przeprowadza się procedurę polegającą na wprowadzeniu do tętnicy udowej cewnika, który dociera do mózgu. Później wykorzystywany jest jeszcze stent, za pomocą którego usuwa się skrzep. To długotrwała procedura, wymagająca obecności specjalnie przeszkolonego chirurga, który ponadto otrzymuje podczas niej dawkę promieniowania, służącego do obrazowania przebiegu operacji. To wymagający zabieg. Nie ma wystarczająco dużo chirurgów, którzy potrafią go wykonać. Szczególnie na terenach podmiejskich i wiejskich, mówi Yoonho Kim, jeden z autorów badań. Procedura wymaga ręcznego sterowania narzędziami, które wykonane są z metalu pokrytego polimerem. Ten z kolei może uszkadzać wyściółkę naczyń krwionośnych. Zespół z MIT postanowił pójść inną drogą. Naukowcy przez ostatnie lata pogłębiali swoją wiedzę na temat hydrożeli oraz produkowanych technologią druku 3D materiałach sterowanych za pomocą pola magnetycznego. Teraz połączyli swoją wiedzę i stworzyli sterowaną magnetycznie pokrytą hydrożelem nić, którą podczas testów przeprowadzili przez dokładny model 1:1 naczyń krwionośnych mózgu. Rdzeń robotycznej nici jest wykonany z nitinolu, czyli stopu niklu i tytanu. To materiał jednocześnie giętki i sprężysty. Został on pokryty specjalnym tuszem połączonym z nitinolem za pomocą cząstek magnetycznych, a całość pokryto hydrożelem, materiałem, który jest biokompatybilny, gładki, nie uszkadza naczyń krwionośnych i nie wpływa na reakcję leżących pod nim cząstek magnetycznych. Następnie za pomocą dużego magnesu wykazali, że są w stanie precyzyjnie sterować urządzeniem. Stworzyli też silikonowy model naczyń krwionośnych mózgu, który wypełnili płynem o podobnej lepkości co krew, a następnie przeprowadzili swoją robotyczną nić przez naczynia. Kim mówi, że ich nić można wyposażyć w różnego typu funkcje. Może ona np. dostarczać do miejsca zatoru leki rozpuszczające zakrzep czy rozbijać go za pomocą lasera. Na potrzeby badań uczeni zastąpili nitinol światłowodem i wykazali, że są taki robot również może dotrzeć do miejsca zakrzepu, a oni są w stanie aktywować laser na żądanie. Przeprowadzono też porównanie robotycznej nici pokrytej i niepokrytej hydrożelem. Okazało się, że żel ułatwiał przemieszczanie się i zapobiegał utknięciu nici w wąskich naczyniach. Jednym z wyzwań chirurgii jest nawigowanie przez złożoną sieć naczyń krwionośnych mózgu, które mogą mieć taką średnicę, iż dostępne cewniki nie są w stanie tam dotrzeć. Te badania dają nadzieję na rozwiązanie tego problemu i przeprowadzenie operacji bez konieczności otwierania czaszki, mówi profesor Kyujin Cho, z Narodowego Uniwersytetu Seulskiego. Kolejna dobra wiadomość jest taka, że skoro chirurg nie musi fizycznie popychać cewnika, gdyż nić jest sterowana za pomocą pola magnetycznego, nie musi on przebywać w sąsiedztwie źródła promieniowania wykorzystywanego do obrazowania przebiegu operacji. Już istniejące rozwiązania pozwalają na jednoczesne zastosowanie pola magnetycznego i fluoroskopii, więc lekarz może przebywać w innym pomieszczeniu, a nawet w innym mieście, kontrolując pole magnetyczne za pomocą dżojstika. Mamy nadzieję, że w kolejnym etapie badań będziemy mogli przetestować naszą technologię in vivo, cieszy się Kim.   « powrót do artykułu
  2. Obrazujący cewnik o średnicy ok. 2 mm przeprowadza optyczną tomografię koherencyjną (ang. optical coherence tomography, OCT), by z rozdzielczością do ok. 1 mikrometra przeskanować przewody nosowe pacjentów z mukowiscydozą. Dzięki temu, nie znieczulając pacjenta, można przeanalizować funkcjonowanie rzęsek układu oddechowego oraz proces usuwania śluzu. Przeprowadziliśmy liczne testy μOCT w laboratorium, to jednak pierwsze badania na ludziach - podkreśla dr Guillermo Tearney z Massachusetts General Hospital. Dotąd nikt nie oglądał tej patofizjologii dynamicznie u żywych pacjentów. Teraz możemy zacząć pojmować rzeczy, o których istnieniu nie mieliśmy nawet pojęcia. Podczas przełomowych badań specjaliści odkryli, że u pacjentów z mukowiscydozą śluz zawiera więcej komórek zapalnych niż w zdrowej grupie kontrolnej i jest bardziej odwodniony, przez co przesuwa się wolniej i tworzy grubszą warstwę. Okazało się także, że u pacjentów z mukowiscydozą występują obszary pozbawione rzęsek i nabłonka. Sądziliśmy, że rzęski znajdują się tam, gdzie powinny, ale źle działają, tymczasem istniały miejsca całkowicie ich pozbawione - opowiada Tearney. Wg naukowców, niebagatelne znaczenie ma podwyższona intensywność odbicia śluzu, która stanowi przybliżenie jego lepkości. Łącznie uwidocznione przez μOCT unikatowe morfologiczne różnice w zakresie śluzu, cieńsza warstwa płynu okołorzęskowego, a także uszkodzenia/ubytki silnie zaburzają transport śluzowo-rzęskowy. Obrazowanie nieprawidłowego śluzu daje wielkie możliwości. Teraz będziemy mogli zobaczyć, jak różne rodzaje terapii wpływają na drogi oddechowe chorych [...] - podsumowuje prof. Steven M. Rowe z Uniwersytetu Alabamy. « powrót do artykułu
×
×
  • Create New...