Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Resweratrol może wzmocnić przyszłych eksploratorów Marsa
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading
« powrót do artykułu -
przez KopalniaWiedzy.pl
W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582
« powrót do artykułu -
przez KopalniaWiedzy.pl
Masa neutrina jest co najmniej milion razy mniejsza niż masa elektronu, informują naukowcy z Karlsruhe Tritium Neutrino (KATRIN). Badania określiły nową górną granicę możliwej masy neutrino na podstawie 36 milionów pomiarów. Dzięki nim wiemy, że wynosi ona nie więcej niż 0,45 elektronowolta (eV). Masa elektronu, kolejnej z najlżejszych cząstek elementarnych, to 511 000 elektronowoltów.
Neutrino jest jedyną cząstką elementarną, której masy nie znamy. Zdobycie wiedzy na jej temat pozwoli na zbadanie, w jaki sposób neutrina nabywają masę. Czy – jak inne cząstki – dzięki oddziaływaniu z polem Higgsa, czy też w jakiś inny, nieznany dotychczas sposób. Poznanie masy neutrino powinno też zdradzić, w jaki sposób neutrina narodziły się w czasie Wielkiego Wybuchu i jak wpłynęły na formowanie się galaktyk.
Nowa górna granica masy oznacza doprecyzowanie wcześniejszych badań przeprowadzonych przez KATRIN. W 2022 roku naukowcy pracujący przy tym eksperymencie stwierdzili, że górną granicą masy neutrino jest 0,8 eV. Teraz międzynarodowy zespół złożony z ponad 140 naukowców przeanalizował dane z 259 dni pracy KATRIN i jeszcze bardziej doprecyzował pomiary.
Eksperyment KATRIN Collaboration wykorzystuje rozpad beta trytu. Podczas niego dochodzi do emisji elektronu i antyneutrina. Antycząstki mają taką samą masę jak odpowiadające im cząstki, więc badania antyneutrina pozwalają określić masę neutrina. Jednak neutrina niemal nie wchodzą w interakcje z materią. Ich badanie (i badanie antyneutrin) jest niezwykle trudne. W ramach eksperymentu KATRIN badany jest więc elektron, nie neutrino.
Rozpad beta trytu to jeden z najmniej energetycznych rozpadów beta. Emitowane w jego trakcie elektron i neutrino unoszą łącznie 18,6 keV energii. Elektron trafia do 200-tonowego spektroskopu długości 23 metrów, o którego niezwykłym transporcie na miejsce montażu informowaliśmy kilka lat temu. Spektroskop bada widmo energii elektronu, jeśli precyzyjnie je poznamy, będziemy wiedzieli ile brakuje ze wspomnianych 18,6 keV, zatem ile energii przypadło na neutrino. Brzmi to prosto, ale jest niezwykle skomplikowanym zadaniem.
Eksperyment KATRIN zakończy działanie jeszcze w bieżącym roku. Naukowcy będą wówczas dysponowali danymi zebranymi z 1000 dni. Spodziewają się, że obniżą górną granicę masy neutrino do 0,3 eV, a może nawet do 0,2 eV. To i dobra, i zła wiadomość. Coraz lepiej poznajemy bowiem masę neutrino, ale nie znamy jej dokładnej wartości. Gdyby było to bliżej 1 eV, to eksperymenty takie jak KATRIN mogłyby dać nam ostateczną odpowiedź. Jednak teraz wiemy już, że potrzebne będą znacznie bardziej precyzyjne urządzenia, niż te, którymi obecnie dysponujemy.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.