Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Resweratrol, polifenol występujący głównie w skórkach winogron, ale także w orzeszkach ziemnych czy owocach morwy i czarnej porzeczce, pomaga zachować masę i siłę mięśni szczurów wystawionych na oddziaływanie warunków grawitacyjnych przypominających Marsa.

Mikrograwitacja osłabia mięśnie i kości. Po zaledwie 3 miesiącach w kosmosie ludzkie mięśnie płaszczkowate zmniejszają się o 1/3. Towarzyszy temu utrata włókien wolnokurczliwych, których potrzebujemy dla wytrzymałości - wyjaśnia dr Marie Mortreux z Harvardzkiej Szkoły Medycznej.

By umożliwić astronautom bezpieczne odbywanie długich misji na Marsie, trzeba więc opracować strategie ograniczania negatywnego wpływu na mięśnie.

Kluczowe będą strategie dietetyczne, zwłaszcza że astronauci podróżujący na Marsa nie będą mieli dostępu do maszyn do ćwiczeń takich jak na Międzynarodowej Stacji Kosmicznej.

Świetnym kandydatem wydaje się resweratrol, który poddawano wielu badaniom pod kątem właściwości przeciwzapalnych, antyoksydacyjnych czy przeciwcukrzycowych.

Ponieważ u szczurów wykazano, że w warunkach całkowitego odciążenia będącego analogiem mikrograwitacji podczas lotu kosmicznego resweratrol pomaga zachować masę kostną i mięśniową, podejrzewaliśmy, że umiarkowana codzienna dawka polifenolu sprawdzi się również przy zapobieganiu spadkowi kondycji mięśni w warunkach grawitacyjnych Marsa.

Oddając warunki grawitacyjne Marsa, naukowcy zastosowali podejście opracowane przez dr Mary Bouxsein dla myszy. Szczury w uprzęży podwieszano na łańcuszku z sufitu klatki.

Podczas eksperymentu 24 samce szczurów przez 14 dni wystawiano na oddziaływanie grawitacji ziemskiej lub stanowiącej odpowiednik grawitacji z Marsa (40% grawitacji ziemskiej). W każdej grupie połowa gryzoni dostawała wodę z resweratrolem w dawce 150 mg/kg masy ciała dziennie. Reszta piła zwykłą wodę. Poza tym wszystkie zwierzęta jadły tę samą karmę.

Co tydzień mierzono obwód łydki oraz siłę chwytu przedniej i tylnej łapy. Po upływie 2 tygodni przeprowadzono badanie histologiczne mięśni łydki.

Tak jak oczekiwano, symulacja warunków z Marsa doprowadziła do osłabienia siły uchwytu, zmniejszenia obwodu łydki, masy mięśniowej i zawartości włókien wolnokurczliwych. Okazało się jednak, że suplementacja polifenolem sprawiła, że siła chwytu łap była niemal taka sama, jak u niesuplementowanych zwierząt z warunków ziemskich.

Co ważne, resweratrol w pełni ochronił masę mięśniową (mięsień płaszczkowaty i brzuchaty) szczurów z symulowanych warunków z Marsa, a zwłaszcza ograniczył utratę włókien wolnokurczliwych. Ochrona nie była jednak całkowita; doszło bowiem do pewnego spadku obwodu łydki (spadła średnia powierzchnia przekroju włókien obu wymienionych mięśni).

Resweratrol nie wpłynął ani na spożycie pokarmów, ani na całkowitą wagę ciała.

Mortreux podkreśla, że wcześniejsze badania nad resweratrolem mogą pomóc w wyjaśnieniu uzyskanych wyników. Ważnym czynnikiem jest tu zapewne insulinowrażliwość. U zwierząt odciążonych bądź z cukrzycą resweratrol sprzyja wzrostowi mięśni, zwiększając insulinowrażliwość i wychwyt glukozy we włóknach mięśniowych. Ma to spore znaczenie dla astronautów, u których podczas lotów dochodzi do spadku insulinowrażliwości.

Amerykanka dodaje, że nie bez znaczenia są też właściwości przeciwutleniające resweratrolu.

Konieczne są dalsze badania, które pomogą ocenić wchodzące w grę mechanizmy, a także wpływ różnych dawek resweratrolu (do 700 mg/kg masy ciała dziennie) na samce i samice. Dodatkowo trzeba będzie ocenić, czy resweratrol nie wchodzi w niekorzystne interakcje z lekami podawanymi astronautom w czasie misji.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed dwoma laty firma SpaceX wystrzeliła w przestrzeń kosmiczną samochód Tesla Roadster z manekinem imieniem Starman na pokładzie. Pojazd właśnie minął Marsa w najbliższej odległości, z jakim przyszło mu spotkać się z Czerwoną Planetą.
      Starman rozpoczął swoją podróż 6 lutego 2018 roku w ramach testowego startu rakiety Falcon Heavy. Podczas testowych lotów nowe rakiety są sztucznie obciążane, jednak są to zwykle bardziej typowe ładunki. Elon Musk postanowił zaś wystrzelić w przestrzeń kosmiczną czerwony sportowy samochód. Teraz górny stopień rakiety wraz z samochodem wykonuje swoje drugie okrążenie wokół Słońca.
      Jonathan McDowell, astrofizyk z Uniwersytetu Harvarda, który w swoim wolnym czasie śledzi obiekty znajdujące się w przestrzeni kosmicznej, poinformował, że 7 października Starman minął Marsa w odległości 7,4 miliona kilometrów. To ok. 20-krotnie dalej niż odległość między Ziemią a Księżycem.
      Oczywiście samochodu ze Starmanem na pokładzie nie można zobaczyć. Jednak orbitę takich obiektów można z łatwością wyliczyć. Dlatego też McDowell dokładnie wiedział, kiedy obiekt minął Marsa i w jakiej odległości.
      Górny stopień Falcona Heavy z umocowaną doń Teslą znajuje się na asymetrycznej orbicie, której aphelium znajduje się poza orbitą Marsa, w odległości 1,66 jednostek astronomicznych od Słońca, a peryhelium jest w odległości 0,99 j.a.
      Jak poinformował McDowell, podczas wcześniejszej orbity wokół Słońca Tesla ze Starmanem przekroczyła orbitę Marsa w momencie, gdy Czerwona Planeta była dość daleko. Teraz znajdowała się stosunkowo blisko, jednak nie na tyle blisko, by Starman odczuł jej wpływ grawitacyjny.
      Mimo, że Tesli nie jesteśmy w stanie zobaczyć, to jednak możemy przypuszczać, że pojazd i Starman są w coraz gorszym stanie. Promieniowanie słoneczne niekorzystne wpłynęło na wszelkie materiały, jak farba, skórzane siedzenia, opony i inne, rozrywając łączące je wiązania węgla. Bez ochrony ze strony ziemskiej atmosfery plastik czy włókno węglowe zaczęło się rozpadać. Za kilkadziesiąt lub kilkaset lat z pojazdu pozostanie aluminiowa rama i najbardziej wytrzymałe elementy szklane.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niemieccy naukowcy poinformowali o dokonaniu najbardziej precyzyjnych pomiarów masy jądra deuteru – deuteronu. Pomiary przeprowadzono porównując masę deuteronu do masy jądra węgla 12. To bardzo ważne niezależne sprawdzenie wcześniejszych pomiarów, które dały niejednoznaczne wyniki. Poznanie dokładnej prostego jądra atomowego, jak wodór, deuter, tryt, jonów H2+ i HD+ jest niezwykle ważne z punktu widzenia badań podstawowych. Pozwala to np. przetestować podstawowe teorie fizyczny, jak elektrodynamikę kwantową. Z kolei masa deuteronu może zostać użyta do precyzyjnego określenia masy neutronu, co z kolei ma fundamentalne znaczenie dla metrologii, fizyki atomowej, molekularnej i badań nad neutrinami.
      Precyzyjnych pomiarów tego typu często dokonuje się za pomocą pułapek Penninga, które wykorzystują silne pola magnetyczne i elektryczne do uwięzienia cząstek. Cząstka taka po uwięzieniu oscyluej w określonej częstotliwości, która zależy od jej masy. Cięższe cząstki oscylują wolniej niż lżejsze. Jeśli więc do tej samej pułapki złapiemy dwa jony o różnych masach, to dzięki pomiarom ich oscylacji możemy poznać stosunek ich mas z bardzo wysoką precyzją (dochodzącą jednej do 8,5 x 10-12).
      Uczeni z Instytutu Fizyki Jądrowej im. Maxa Plancka, Uniwersytetu Johannesa Gutenberga, GSI Helmholtz Centre for Heavy Ion Research oraz Helmholtz Institute w Moguncji wykorzystali specjalny kriogeniczny spektrometr mas wyspecjalizowany w pomiarach mas lekkich jonów. Urządzenie o nazwie LIONTRAP składa się z serii pułapek Penninga. Jest wśród nich wysoce precyzyjna pułapka korzystająca z siedmiu elektrod oraz dwie przylegające pułapki-magazyny. Całość poddana jest działaniu homogenicznego pola magnetycznego o natężeniu 3,8 tesli, znajduje się w niemal idealnej próżni (o ciśnieniu mniejszym niż 10-17 mbar) i w temperaturze około 4 kelwinów.
      Deuteron najpierw trafił do pułapki-magazynu, a następnie został umieszczony w wysoce precyzyjnej pułapce. Tam zmierzono jego oscylacje i porównano je z oscylacjami jonu węgla-12. Na tej podstawie stwierdzono, że masa deuteronu wynosi 2.013553212535(17) jednostek atomowych. Liczba w nawiasie oznacza niepewność pomiaru ostatnich cyfr. Masa jonu HD+ określona tą samą metodą została oszacowana na 3.021378241561(61) jednostek atomowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jak wiemy z teorii kwantowej, cząstki mogą jednocześnie przyjmować dwa różne stany. To superpozycja. Podręczniki mówią, że akt obserwacji czy też pomiaru stanu cząstek, prowadzi do kolapsu funkcji falowej, czyli zniszczenia superpozycji, i cząstka zajmuje tylko jedną lokalizację. Fizycy spierają się, jak do tego dochodzi. Teraz jedno z najpowszechniej przyjętych wyjaśnień, które zakłada rolę grawitacji w kolapsie, otrzymało poważny cios w postaci badań przeprowadzonych w słynnym włoskim Laboratorium Narodowym Gran Sasso.
      Hipoteza o roli grawitacji bierze swoje początki w pracach dwóch węgierskich fizyków, Károlyházego Frigyesa w latach 60. i Lajosa Diósiego w latach 80. Podstawę ich teorii stanowi stwierdzenie, że pole grawitacyjne obiektu wykracza poza teorię kwantową. Gdy cząstka zostaje wprowadzona w superpozycję, jej pole grawitacyjne próbuje tego samego, lecz nie jest w stanie długo jej utrzymać. Dochodzi do kolapsu, który pociąga za sobą kolaps superpozycji cząstki. Wielkim zwolennikiem grawitacyjnego kolapsu – który rezygnuje z antropocentrycznej koncepcji obserwatora – jest wybitny matematyk Roger Penrose.
      Od dawna twierdzi on, że spontaniczne załamanie superpozycji, a więc lokalizacja cząstki, ma związek z geometrią czasoprzestrzeni, zatem z grawitacją. Stwierdził on wprost, że do załamania superpozycji dochodzi, gdy mamy do czynienia z sytuacjami, które w dostatecznym stopniu różnią się geometrią czasoprzestrzeni.
      Dotychczas jednak wydawało się, że nie jest możliwe przeprowadzenie badań dowodzących prawdziwości powyższej teorii. Sam Diosi, który jest jednym ze współautorów eksperymentu w Gran Sasso, mówi, że przez 30 lat był "krytykowany we własnym kraju za spekulacje na temat czegoś, czego nie można przetestować".
      Najnowsze osiągnięcia nauki umożliwiły jednak to, co do niedawna było niemożliwe. Naukowcy stwierdzili, że cząstka, która podlega kolapsowi, gwałtownie zmieni pozycję, co doprowadzi do ogrzania systemu, którego jest częścią. To tak, jakby dodatkowo ją popchnąć, mówi współautor badań Sandro Donadi. Jeśli taka cząstka ma ładunek, wyemituje ona foton. Jeśli zaś będziemy mieli całą grupę cząstek w superpozycji, dojdzie do zgodnej emisji.
      Grupa Diosiego, chcąc przetestować taką ideę, stworzyła detektor z dużego kryształu germanu, który miał wykrywać nadmiarową emisję promieniowania gamma oraz rentgenowskiego z jąder germanu. Kryształ został otoczony ołowianą osłoną, a eksperyment przeprowadzono w Gran Sasso, 1,4 kilometra pod powierzchnią ziemi, co miało osłonić całość od innych zakłóceń. W czasie 2 miesięcy badań detektor zarejestrował 576 fotonów. To niewiele więcej niż przewidywane dla tego eksperymentu 506 fotonów.
      Tymczasem model Penrose'a przewidywał, że pojawi się 70 000 takich fotonów. Powinniśmy zarejestrować kolapsy, ale ich nie odnotowaliśmy, zauważa biorąca udział w badaniach Cătălina Curceanu z Narodowego Instytutu Fizyki Jądrowej w Rzymie. To zaś wskazuje, że nie dochodzi do spontanicznego kolapsu pod wpływem samej tylko grawitacji.
      Jednak, jak zauważa Ivette Fuentes z University of Southampton, żeby potwierdzić uzyskane wyniki należy sztucznie stworzyć superpozycje, a nie polegać na naturalnie zachodzących procesach. Jej zespół pracuje obecnie nad stworzeniem superpozycji 100 milionów atomów sodu.
      Sam Penrose pochwalił eksperyment, jednak dodał, że nie jest on wystarczający do przetestowania prawdziwości jego modelu. Uczony zauważa, że nie jest zwolennikiem teorii o gwałtownej zmianie pozycji cząstki, gdyż może to powodować, że wszechświat zyskuje lub traci energię, co narusza podstawy fizyki. Penrose dodaje, że w czasie przerwy spowodowanej pandemią udoskonalał swój model. W jego wyniku nie powstaje ciepło czy promieniowanie, dodaje.
      Fizyk teoretyczny Maaneli Derakhshani z Rutgers University mówi, że nawet jeśli sama grawitacja powoduje kolaps, to cały proces jest bardziej złożony niż pierwotny model Penrose'a.
      Praca Underground test of gravity-related wave function collapse opublikowana została na łamach Nature Physics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chiny rozpoczęły pierwszą samodzielnie zorganizowaną misję marsjańską. Tianwen-1 wystartowała na pokładzie rakiety Długi Marsz 5 Y-4 z Centrum Kosmicznego Wenchang na wyspie Hainan. W lutym przyszłego roku ma ona dotrzeć do Marsa i umieścić tam łazik, który będzie pracował przez 90 dni. Chiny są więc drugim krajem, po Zjednoczonych Emiratach Arabskich, który w bieżącym miesiącu wysłał misję na Marsa.
      Jeśli wszystko pójdzie zgodnie z planem, Chiny będą pierwszym państwem, które podczas pierwszej misji na Marsa umieściło tam orbiter i lądownik.
      Rzecznik misji, Liu Tongjie, mówi, że poważne wyzwania dopiero przed Tianwen-1. Gdy przybędziemy w pobliże Marsa, krytycznym momentem będzie wyhamowanie. Jeśli proces ten nie zostanie przeprowadzony prawidłowo, albo nie będzie wystarczająco precyzyjny, grawitacja Marsa nie przechwyci pojazdu, stwierdza. Pojazd z łazikiem na pokładzie ma wejść na orbitę Marsa i pozostać na niej przez 2,5 miesiąca, a następnie podejmie próbę lądowania.
      Chiny już w 2011 roku próbowały wysłać swój pojazd na Marsa. Państwo Środka wzięło wówczas udział w rosyjskiej misji Fobos-Grunt. Rosyjska rakieta nie weszła jednak na orbitę i rozpadła się nad Pacyfikiem.
      Przed kilkoma dniami swój pojazd w kierunku Marsa wysłały też Zjednoczone Emiraty Arabskie. W bieżącym roku odbędzie się też amerykańska misja Mars 2020, w ramach której USA chcą posadowić na Marsie łazik Perseverance, najcięższy obiekt, jak człowiek wysłał na Czerwoną Planetę.
      Czwarta z tegorocznych zapowiadanych misji, europejsko-rosyjska ExoMars została odłożona o dwa lata z powodu koronawirusa i problemów technicznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety.
      Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze.
      Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów.
      Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd.
      Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów.
      Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością.
      Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona.
      Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy.
      Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich.

      « powrót do artykułu
×
×
  • Create New...