Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Resweratrol, polifenol występujący głównie w skórkach winogron, ale także w orzeszkach ziemnych czy owocach morwy i czarnej porzeczce, pomaga zachować masę i siłę mięśni szczurów wystawionych na oddziaływanie warunków grawitacyjnych przypominających Marsa.

Mikrograwitacja osłabia mięśnie i kości. Po zaledwie 3 miesiącach w kosmosie ludzkie mięśnie płaszczkowate zmniejszają się o 1/3. Towarzyszy temu utrata włókien wolnokurczliwych, których potrzebujemy dla wytrzymałości - wyjaśnia dr Marie Mortreux z Harvardzkiej Szkoły Medycznej.

By umożliwić astronautom bezpieczne odbywanie długich misji na Marsie, trzeba więc opracować strategie ograniczania negatywnego wpływu na mięśnie.

Kluczowe będą strategie dietetyczne, zwłaszcza że astronauci podróżujący na Marsa nie będą mieli dostępu do maszyn do ćwiczeń takich jak na Międzynarodowej Stacji Kosmicznej.

Świetnym kandydatem wydaje się resweratrol, który poddawano wielu badaniom pod kątem właściwości przeciwzapalnych, antyoksydacyjnych czy przeciwcukrzycowych.

Ponieważ u szczurów wykazano, że w warunkach całkowitego odciążenia będącego analogiem mikrograwitacji podczas lotu kosmicznego resweratrol pomaga zachować masę kostną i mięśniową, podejrzewaliśmy, że umiarkowana codzienna dawka polifenolu sprawdzi się również przy zapobieganiu spadkowi kondycji mięśni w warunkach grawitacyjnych Marsa.

Oddając warunki grawitacyjne Marsa, naukowcy zastosowali podejście opracowane przez dr Mary Bouxsein dla myszy. Szczury w uprzęży podwieszano na łańcuszku z sufitu klatki.

Podczas eksperymentu 24 samce szczurów przez 14 dni wystawiano na oddziaływanie grawitacji ziemskiej lub stanowiącej odpowiednik grawitacji z Marsa (40% grawitacji ziemskiej). W każdej grupie połowa gryzoni dostawała wodę z resweratrolem w dawce 150 mg/kg masy ciała dziennie. Reszta piła zwykłą wodę. Poza tym wszystkie zwierzęta jadły tę samą karmę.

Co tydzień mierzono obwód łydki oraz siłę chwytu przedniej i tylnej łapy. Po upływie 2 tygodni przeprowadzono badanie histologiczne mięśni łydki.

Tak jak oczekiwano, symulacja warunków z Marsa doprowadziła do osłabienia siły uchwytu, zmniejszenia obwodu łydki, masy mięśniowej i zawartości włókien wolnokurczliwych. Okazało się jednak, że suplementacja polifenolem sprawiła, że siła chwytu łap była niemal taka sama, jak u niesuplementowanych zwierząt z warunków ziemskich.

Co ważne, resweratrol w pełni ochronił masę mięśniową (mięsień płaszczkowaty i brzuchaty) szczurów z symulowanych warunków z Marsa, a zwłaszcza ograniczył utratę włókien wolnokurczliwych. Ochrona nie była jednak całkowita; doszło bowiem do pewnego spadku obwodu łydki (spadła średnia powierzchnia przekroju włókien obu wymienionych mięśni).

Resweratrol nie wpłynął ani na spożycie pokarmów, ani na całkowitą wagę ciała.

Mortreux podkreśla, że wcześniejsze badania nad resweratrolem mogą pomóc w wyjaśnieniu uzyskanych wyników. Ważnym czynnikiem jest tu zapewne insulinowrażliwość. U zwierząt odciążonych bądź z cukrzycą resweratrol sprzyja wzrostowi mięśni, zwiększając insulinowrażliwość i wychwyt glukozy we włóknach mięśniowych. Ma to spore znaczenie dla astronautów, u których podczas lotów dochodzi do spadku insulinowrażliwości.

Amerykanka dodaje, że nie bez znaczenia są też właściwości przeciwutleniające resweratrolu.

Konieczne są dalsze badania, które pomogą ocenić wchodzące w grę mechanizmy, a także wpływ różnych dawek resweratrolu (do 700 mg/kg masy ciała dziennie) na samce i samice. Dodatkowo trzeba będzie ocenić, czy resweratrol nie wchodzi w niekorzystne interakcje z lekami podawanymi astronautom w czasie misji.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
      Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
      Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
      Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
      Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
      High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
      Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Masa neutrina jest co najmniej milion razy mniejsza niż masa elektronu, informują naukowcy z Karlsruhe Tritium Neutrino (KATRIN). Badania określiły nową górną granicę możliwej masy neutrino na podstawie 36 milionów pomiarów. Dzięki nim wiemy, że wynosi ona nie więcej niż 0,45 elektronowolta (eV). Masa elektronu, kolejnej z najlżejszych cząstek elementarnych, to 511 000 elektronowoltów.
      Neutrino jest jedyną cząstką elementarną, której masy nie znamy. Zdobycie wiedzy na jej temat pozwoli na zbadanie, w jaki sposób neutrina nabywają masę. Czy – jak inne cząstki – dzięki oddziaływaniu z polem Higgsa, czy też w jakiś inny, nieznany dotychczas sposób. Poznanie masy neutrino powinno też zdradzić, w jaki sposób neutrina narodziły się w czasie Wielkiego Wybuchu i jak wpłynęły na formowanie się galaktyk.
      Nowa górna granica masy oznacza doprecyzowanie wcześniejszych badań przeprowadzonych przez KATRIN. W 2022 roku naukowcy pracujący przy tym eksperymencie stwierdzili, że górną granicą masy neutrino jest 0,8 eV. Teraz międzynarodowy zespół złożony z ponad 140 naukowców przeanalizował dane z 259 dni pracy KATRIN i jeszcze bardziej doprecyzował pomiary.
      Eksperyment KATRIN Collaboration wykorzystuje rozpad beta trytu. Podczas niego dochodzi do emisji elektronu i antyneutrina. Antycząstki mają taką samą masę jak odpowiadające im cząstki, więc badania antyneutrina pozwalają określić masę neutrina. Jednak neutrina niemal nie wchodzą w interakcje z materią. Ich badanie (i badanie antyneutrin) jest niezwykle trudne. W ramach eksperymentu KATRIN badany jest więc elektron, nie neutrino.
      Rozpad beta trytu to jeden z najmniej energetycznych rozpadów beta. Emitowane w jego trakcie elektron i neutrino unoszą łącznie 18,6 keV energii. Elektron trafia do 200-tonowego spektroskopu długości 23 metrów, o którego niezwykłym transporcie na miejsce montażu informowaliśmy kilka lat temu. Spektroskop bada widmo energii elektronu, jeśli precyzyjnie je poznamy, będziemy wiedzieli ile brakuje ze wspomnianych 18,6 keV, zatem ile energii przypadło na neutrino. Brzmi to prosto, ale jest niezwykle skomplikowanym zadaniem.
      Eksperyment KATRIN zakończy działanie jeszcze w bieżącym roku. Naukowcy będą wówczas dysponowali danymi zebranymi z 1000 dni. Spodziewają się, że obniżą górną granicę masy neutrino do 0,3 eV, a może nawet do 0,2 eV. To i dobra, i zła wiadomość. Coraz lepiej poznajemy bowiem masę neutrino, ale nie znamy jej dokładnej wartości. Gdyby było to bliżej 1 eV, to eksperymenty takie jak KATRIN mogłyby dać nam ostateczną odpowiedź. Jednak teraz wiemy już, że potrzebne będą znacznie bardziej precyzyjne urządzenia, niż te, którymi obecnie dysponujemy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z załogową misją na Marsa wiążą się nie tylko duże koszty i problemy techniczne. Jedne i drugie można w końcu przezwyciężyć. Znacznie trudniejsze do pokonania będą ograniczenia ludzkiego organizmu. Wyewoluowaliśmy na Ziemi i jesteśmy przyzwyczajeni do ziemskiej grawitacji oraz zapewnianej przez atmosferę ochrony przed promieniowaniem kosmicznym. Niejednokrotnie informowaliśmy o problemach zdrowotnych astronautów. Pobyt w kosmosie może uszkadzać mózg, nerki, prowadzić do anemii. Od lat pojawiają się też doniesienia o negatywnym wpływie na wzrok.
      Oftalmolog Santiago Costantino z Uniwersytetu w Montrealu poinformował, że co najmniej 70% osób, które przebywały na Międzynarodowej Stacji Kosmicznej cierpi na związany z lotem w kosmos zespół neurookulistyczny (SANS, spaceflight-associated neuro-ocular syndrome). Uczony wraz z zespołem chcieli przyjrzeć się zmianom biomechanicznym, które prowadzą do pojawienia się SANS. W tym celu przeanalizowali dane dotyczące 13 astronautów, którzy przebywali na Międzynarodowej Stacji Kosmicznej od 157 do 186 dni. Średnia wieku astronautów wynosiła 48 lat. Pochodzili oni z różnych krajów, ośmioro z nich w chwili badań miało za sobą jedną misję, były wśród nich 4 kobiety.
      Naukowcy porównali trzy parametry, które mierzyli przed i po misji: sztywność gałki ocznej, ciśnienie wewnątrzgałkowe oraz amplitudę pulsu oka. Pierwszy z parametrów badano za pomocą koherencyjnej tomografii optycznej, dwa pozostałe – metodą tonometrii.
      Naukowcy zauważyli, że w czasie misji doszło do znaczących zmian właściwości biomechanicznych gałek ocznych. Ich sztywność zmniejszyła się o 33%, ciśnienie węwnątrzgałkowe spadło o 11%, a amplituda pulsu był niższa o 25%. Tym zmianom fizycznym towarzyszyły objawy takie jak zmniejszenie rozmiarów gałki ocznej, zmiana obszaru, w którym oko widzi ostry obraz oraz – w części przypadków – obrzęk nerwu wzrokowego oraz fałdowanie siatkówki. Okazało się też, że u pięciu astronautów naczyniówka ma grubość większą niż 400 mikrometrów i nie było to skorelowane z wiekiem, płcią ani wcześniejszym pobytem w przestrzeni kosmicznej. "Brak powszechnego ciążenia zmienia dystrybucję krwi w organizmie, zwiększając przepływ krwi w głowie i spowalniając krążenie żylne w oczach. Prawdopodobnie dlatego dochodzi do zwiększenia grubości naczyniówki, gęstej sieci naczyń krwionośnych, odpowiedzialnej za odżywianie siatkówki.
      Zdaniem naukowców powiększenie się naczyniówki w wyniku braku grawitacji może rozciągać włókna kolagenowe w twardówce, prowadząc do długotrwałych zmian właściwości mechanicznych gałki ocznej. Badacze sądzą też, że pulsowanie krwi w warunkach mikrograwitacji może prowadzić do pojawienia się zjawiska uderzeń hydraulicznych, w wyniku których nagłe zmiany ciśnienia przepływu krwi wywołują w oku wstrząsy mechaniczne prowadzące do znacznego przemodelowania tkanek oka.
      Autorzy badań uważają, że zmiany te nie powinny stanowić problemu w przypadku misji trwających 6 do 12 miesięcy. Po powrocie na Ziemię oczy astronautów powróciły do normy, a problemy ze wzrokiem można było korygować za pomocą okularów. Problemem mogą być jednak dłuższe misje, takie jak załogowa wyprawa na Marsa, która może trwać nawet ponad 30 miesięcy. Obecnie nie znamy ani skutków tak długotrwałego pobytu w warunkach mikrograwitacji, ani nie potrafimy im zapobiegać.
      Zaobserwowane przez nas zmiany właściwości mechanicznych oka mogą być biomarkerami SANS. Pomoże to zidentyfikować tych astronautów, którzy są szczególnie narażeni na ryzyko, zanim jeszcze pojawią się u nich problemy spowodowane długotrwałym pobytem w przestrzeni kosmicznej, mówi Costantino.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Załogowa podróż na Marsa nie będzie łatwym i szybkich przedsięwzięciem. Tymczasem, chociażby z powodu negatywnego wpływu na zdrowie stanu nieważkości i promieniowania kosmicznego, powinna zająć ona jak najmniej czasu. Dlatego też w należącym do NASA Langley Research Center w Virginii trwają prace nad napędem, dzięki któremu astronauci powinni dolecieć na Czerwoną Planetę i wrócić na Ziemię w ciągu około 2 lat.
      Tamtejsi inżynierowe pracują nad jądrowym napędem elektrycznym. Ma on wykorzystywać reaktor atomowy do wytwarzania energii elektrycznej, która będzie jonizowała wydobywające się z dysz paliwo zapewniając ciąg pojazdowi kosmicznemu.
      W ramach projektu Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles (MARVL) powstaje jeden z najważniejszych elementów napędu, jego system rozprowadzania ciepła. Inżynierowie NASA chcą, by miał on budowę modułową i by można było go złożyć w przestrzeni kosmicznej za pomocą autonomicznych robotów. W ten sposób unikniemy konieczności umieszczenia wszystkiego w rakiecie nośnej, co da nam nieco większą elastyczność i pozwoli na zoptymalizowanie całego projektu, mówi Amanda Stark, odpowiedzialna za MARVL.
      Takie rozwiązanie jest bardzo pożądane. Cały układ rozprowadzania ciepła może mieć, po pełnym rozłożeniu, wymiary boiska do futbolu amerykańskiego (ok. 5400 m2). Można więc sobie wyobrazić, z jakimi trudnościami wiąże się umieszczenie takich instalacji w rakiecie startującej z Ziemi. Zespół Strak chce, by poszczególne elementy wcześniej wysłać w przestrzeń kosmiczną. Tam roboty złożyłyby instalację, w której będzie krążyła substancja chłodząca, na przykład stop sodu i potasu.
      Trzeba zauważyć, że taka technologia wpłynęłaby też na architekturę samego pojazdu, do którego instalacja będzie montowana. Istniejące dotychczas pojazdy kosmiczne nie były projektowane z myślą o składaniu czegokolwiek w kosmosie. Mamy tutaj więc okazję, by zastanowić się, jak taki pojazd powinien być zbudowany, jak należy go przygotować, jak będzie wyglądał.
      Projekt MARVL jest rozwijany w ramach programu Early Career Initiative. Biorące w nim udział zespoły mają dwa lata na opracowanie szczegółów swojego pomysłu. Stark i jej zespół współpracują z firmą Boyd Lancaster, która specjalizuje się w przemysłowych systemach chłodzenia. Do pomocy mają też specjalistów od układów rozpraszania ciepła oraz ekspertów specjalizujących się w przepływie cieczy z NASA. Po dwóch latach prac NASA oczekuje, że twórcy MARVL przystąpią do budowy niewielkiego działającego na Ziemi prototypu. Jeśli projekt się powiedzie, podobne rozwiązania mogą zostać zastosowane podczas innych misji, nie tylko załogowych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...