Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Nie żyje ostatni samiec nosorożca sumatrzańskiego z Malezji. Tym samym w kraju pozostała tylko jedna samica.

Nie wiadomo, co było przyczyną zgonu, ale wcześniejsze doniesienia medialne sugerowały choroby nerek i wątroby.

Augustine Tuuga, dyrektor Wydziału Dzikiej Przyrody stanu Sabah, ujawnił, że Tam, bo o nim mowa, mieszkał w borneańskim rezerwacie.

Śmierć Tama zwiększa presję wywieraną na osoby pracujące przy projekcie rozmnażania krytycznie zagrożonych nosorożców metodą in vitro. Ojcem dzieci Iman, na które tak bardzo wszyscy liczą, miałby być samiec z Indonezji.

Tuuga ujawnia, że Iman ma problemy związane z macicą. Jajeczkuje, ale nie może zajść w ciążę.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet jeśli udałoby się zapłodnić tę ostatnią samicę, to co by to dało? Kilka nosorożców w zoo?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tu jest mowa o tym, że nie żyje ostatni samiec nosorożca sumatrzańskiego z Malezji, a nie że ostatni w ogóle na Świecie.

Problem jest bardzo poważny, ale żyje jeszcze ok. 300szt. tego nosorożca, z czego ok. 50 w naturalnym środowisku (tak przynajmniej podaje Wikipedia). Jest wiec jeszcze szansa na uratowanie gatunku. Nie wiem tylko o który podgatunek tutaj chodzi, bo wygląda na to, że są 3 podgatunki, ale wszystkie 3 skrajnie zagrożone wyginięciem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ale problemem tych nosorożców jest kurczący się habitat. Czyli nie byłyby zagrożone, gdyby miały gdzie żyć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W XIX wieku Arnold Adolph Berthold wykastrował koguta, by sprawdzić, dlaczego koguty pieją, a kury tego nie robią. Po kastracji zwierzę przestało piać. Wówczas nie było wiadomo, która substancja w jądrach odpowiada za typowe dla samców zachowanie. Teraz już wiemy, jest nim testosteron. Mimo iż nazywany jest „męskim hormonem”, występuje też u samic. Jednym ze sposobów, w jaki testosteron działa na organizm, jest łączenie się z receptorem androgenowym.
      Naukowcy z Uniwersytetu Technicznego w Monachium i Instytutu Inteligencji Biologicznej im. Maxa Plancka jako pierwsi stworzyli kury domowe pozbawione receptora androgenowego, dzięki czemu mogli sprawdzić, jak androgenowe szlaki sygnałowe wpływają na wygląd i zachowanie obu płci tego gatunku.
      Testosteron, po połączeniu się z receptorem androgenowym, włącza produkcję pewnych protein. Testosteron może być też metabolizowany w estrogen – „hormon żeński” – i łączy się wówczas z innym receptorem. Powstaje więc pytanie, jaką rolę odgrywają androgenowe szlaki sygnałowe.
      Benjamin Schusser i Manfred Gahr stworzyli genetycznie zmodyfikowane kury domowe, pozbawione receptora androgenowego. Uczeni wybrali kurę domową, gdyż to inteligentne zwierzę społeczne, które wykazuje zachowania typowe dla płci, takie jak pianie kogutów.
      Jak się spodziewano, koguty pozbawione receptora androgenowego były bezpłodne, a niektóre z zewnętrznych cech płciowych – przydatki głowowe (grzebień i korale) – były niedorozwinięte. Zdziwiło nas, że cechy typowe dla samców zostały tylko częściowo utracone. To oznacza, że wygląd zewnętrzny koguta nie jest determinowany wyłącznie przez androgenowe szlaki sygnałowe, zauważa jedna z głównych autorek badań, Mekhla Rudra.
      Co interesujące, brak receptora androgenowego podobnie wpłynął na samice. Kury również były bezpłodne, a typowe ozdoby głowy były znacznie mniejsze, niż normalnie. Młode kury i koguty były niemal nie do odróżnienia. Inną interesującą rzecz zauważono, gdy zwierzęta były starsze. Dorosłe samice wytwarzały testosteron, ale bez receptora androgenowego nie przechodziły owulacji i nie składały jaj, co pokazuje, że tworzenie się jaja i jego znoszenie jest zależne od androgenu.
      Wyniki badań wskazują, że testosteron odgrywa ważną rolę u obu płci. Opisywanie go więc jako hormonu typowo męskiego jest uproszczeniem. Oddziaływanie hormonów na organizmy żywe jest bardzo złożone i nie do końca je rozumiemy. Powyższe badania dostarczają też dodatkowych informacji na temat rozwoju płciowego u ptaków.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przywykliśmy myśleć, że w królestwie zwierząt opiekę nad osobnikami młodocianymi roztaczają matki, pary rodziców, albo czasem całe stado, nierzadko wspierane przez starsze rodzeństwo, a rola samca ogranicza się do przekazania materiału genetycznego i utrzymania terytorium, na którym przebywają samice. Tymczasem udział ojca w opiece nad potomstwem może być bardzo duży, a w przyrodzie rola samca jest często kluczowa w procesie odchowu młodych.
      Gdy mowa o opiece ojców nad potomstwem u wielu osób pojawi się skojarzenie z konikami morskimi, czyli rybami morskimi z rodziny igliczniowatych (Syngnathidae), u których samce inkubują ikrę w specjalnej torbie. Niezależnie od grupy systematycznej opieka rodzicielska, zarówno sprawowana przez ojca jak i matkę, ma jeden cel – zwiększyć przeżywalność potomstwa, oczywiście  kosztem rodziców.
      A jak to wygląda u płazów, czy ojcowie są zaangażowani w opiekę?
      Spośród współcześnie żyjących płazów szacuje się, że różne przejawy opieki rodzicielskiej występują u około 5% opisanych gatunków (tj. u ponad 400 gatunków) z przynajmniej 31 rodzin i różnych rzędów występujących na różnych kontynentach. Oznacza to, że strategia opieki rodzicielskiej wykształciła się wielokrotnie i niezależnie w toku ewolucji. Pięć procent to stosunkowo niewiele jednak należy wziąć pod uwagę, że nasza znajomość ekologii wielu egzotycznych gatunków jest niewielka, dlatego udział tego typu zachowań jest niewątpliwie znacznie niedoszacowany. Co ciekawe u płazów dominuje model samotnego rodzica, a wspólna opieka samca i samicy to prawdziwa rzadkość. U płazów ogoniastych (np. u salamander bezpłucnych) to samica głównie opiekuje się potomstwem, podczas gdy u ponad 2/3 płazów bezogonowych to właśnie ojcowie są głównymi opiekunami.
      Zatem na czym polega opieka żabiego taty?
      Udział ojców w opiece nad potomstwem może trwać od kilku do kilkudziesięciu dni. Najczęściej opieka przejawia się transportem jaj/kijanek, w tym dbaniem o warunki właściwej inkubacji. Popularny przykład opieki obserwować można u bajecznie kolorowych drzewołazów - Dendrobatidae niewielkich płazów popularnych w terrarystyce, ogrodach zoologicznych czy filmach przyrodniczych, u których transport i opieka nad kijankami jest bardzo częstym zachowaniem. U poszczególnych gatunków wygląd to już różnie, a opiekę sprawują zarówno samce, jak i samice. Ojcowie często pozostają w pobliżu miejsc gdzie rozwijają się kijanki aż do ich metamorfozy. Jednak tego typu behawior to nie tylko egzotyczne tropiki, równie ciekawe zachowania obserwować można u występującej na południowym wschodzie Europy pętówki babienicy Alytes obstetricnas. U tego gatunku samiec po zapłodnieniu jaj składanych w sznurach, oplata je sobie wokół tylnych nóg, a następnie nosi je na lądzie, aż do momentu wylęgu kijanek co trwa około 30 dni
      Samiec żaby darwina Rhinoderma darwinii krytycznie zagrożonego gatunku z Chile po około 20 dniach inkubacji jaj na lądzie „połyka” rozwinięte larwy, które trafiają do wyjątkowo silnie rozwiniętego worka głosowego. W tym okresie kijanki żywią się  wydzieliną produkowaną przez skórę (jest to niezwykły w świecie zwierząt przykład patrotrofii). Rozwój w tym swoistym inkubatorze trwa około 6 tygodni, tj. aż do metamorfozy, gdy młode żaby wielkości centymetra opuszczają ciało ojca.
      Kolejnym niezwykłym przykładem, jest ochrona nad larwami i młodymi obserwowana u afrykańskiej żaby byk Pyxicephalus adspersus. Samce pilnują kijanek rozwijających się w niewielkich zagłębieniach, tzw. sadzawkach, chroniąc je przed drapieżnikami i przed wysychaniem. Gdy wody zaczyny brakować w sadzawce, opiekun potrafi wykopać odpowiedni kanał, tak by uzupełnić jej brak, lub by udrożnić kanał, którym kijanki przedostaną się do nowego bezpiecznego miejsca.
      Podsumowując opieka rodzicielska u płazów bezogonowych występuje głównie u gatunków rozmnażających się na lądzie, gdzie panują zmienne warunki i istnieje duże ryzyko nieprzetrwania rozwijających się bez opieki młodych osobników. W takim środowisku rodzice, w tym bardzo często sami ojcowie, inwestują duże siły i podejmują się odchowu niewielkiej liczby potomstwa, ale dzięki ich wysiłkowi śmiertelność jest niewielka, a strategia ta pozwala trwać im od setek pokoleń.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Znaczna część Amazonii może znajdować się w punkcie, w którym las deszczowy zaczyna zmieniać się w sawannę, wynika z badań opublikowanych na łamach Nature Communication. Lasy deszczowe są wrażliwe na długoterminowe zmiany ilości opadów. Jeśli poziom opadów spadnie poniżej określonego poziomu, las deszczowy może zacząć zamieniać się w sawannę.
      Na około 40% Amazonii poziom opadów jest obecnie taki, że tamtejszy ekosystem może być albo lasem deszczowym, albo sawanną, mówi główny autor najnowszych badań, Arie Staal z Instytutu Kopernika na Uniwersytecie w Utrechcie. To ważne odkrycie, gdyż poziom opadów w Amazonii zmniejszył się i wszystko wskazuje na to, że nadal będzie spadał.
      Staal i jego koledzy badali stabilność tropikalnych lasów deszczowych Ameryk, Azji, Afryki i Oceanii. Sprawdzali, jak ekosystemy takie reagują na zmiany wzorców opadów.
      Naukowcy badali odporność lasów deszczowych, próbując odpowiedzieć na dwa pytania. Pierwsze z nich brzmiało: Czy jeśli wszystkie lasy deszczowe tropików znikną, to czy będą w stanie się odrodzić? Pytanie drugie zaś, było jego odwrotnością: Co by się stało, gdyby lasy deszczowe porastały całą powierzchnię ziemskich tropików?
      Odpowiedź na takie dwa ekstremalne scenariusze może dać naukowcom wskazów, co do odporności i stabilności prawdziwych tropikalnych lasów deszczowych. Pomaga też zrozumieć, jak lasy reagują na zmiany wzorców opadów.
      Najpierw naukowcy uruchomili swój model z założeniem, że w tropikach Afryki, obu Ameryk, Azji i Australii nie występują żadne lasy. Sprawdzali, w jakim tempie lasy takie by się pojawiły, co pozwala na określenie minimalnej ilości lasu w każdym z regionów.
      Dynamika lasu deszczowego jest interesująca. Gdy las rośnie i rozprzestrzenia się, wpływa na opady. Lasy generują swój własny deszcz, gdyż liście wyparowują wodę, która później opada na ziemię. Im więcej deszczu, tym mniej pożarów i tym więcej lasów. W naszej symulacji widzimy tę dynamikę, mówi Staal.
      Drugie modelowanie wykonano z początkowym założeniem, że lasy deszczowe pokrywają całe tropiki. Okazało się, że jest to scenariusz bardzo niestabilny, gdyż w wielu miejscach nie występuje wystarczająco dużo opadów, by podtrzymać istnienie lasu deszczowego. W wielu miejscach las zniknął z powodu braku wilgoci. "Gdy powierzchnia lasu się kurczy, zmniejsza się ilość opadów, region staje się bardziej suchy, pojawia się więcej pożarów, więc dochodzi do kolejnej utraty lasu", dodaje uczony.
      W końcu naukowcy zajęli się modelowaniem dynamiki lasów tropikalnych w sytuacji, gdy do końca wieku utrzyma się bardzo wysoki poziom emisji gazów cieplarnianych, zgodny z jednym z modeli przyjętych przez IPCC.
      Okazało się, że w miarę wzrostu emisji amazoński las deszczowy będzie tracił swoją naturalną odporność, ekosystem stanie się niestabilny, prawdopodobnie zacznie wysychać, a las deszczowy zmieni się w sawannę. Taki los może czekać nawet najbardziej odporne fragmenty lasu deszczowego. Z analiz wynika, że w scenariuszu wysokiej emisji gazów cieplarnianych najmniejszy obszar, jaki jest potrzebny do podtrzymania istnienia lasu deszczowego Amazonii będzie o 66% mniejszy niż niezbędne minimum. Z kolei w basenie Kongo lasy deszczowe są ciągle zagrożone i nie odrodzą się, jeśli je utracimy, ale w scenariuszu wysokiej emisji zmiany w nich zachodzące mogą być mniej dramatyczne niż w przypadku Amazonii.
      Obszary, na których możliwe jest naturalne odrodzenie się lasów deszczowych są dość małe. Teraz rozumiemy, że lasy deszczowe na wszystkich kontynentach są bardzo wrażliwe na globalne zmiany i mogą szybko utracić zdolność do adaptacji. Gdy raz znikną, powrót do wcześniejszego stanu zajmie im całe dekady. Musimy też pamiętać, że w lasach deszczowych żyje większość światowych gatunków. Jeśli znikną lasy, gatunki te zostaną na zawsze utracone, stwierdzają autorzy badań.
      Najbardziej stabilne lasy deszczowe rosną w Indonezji i Malezji. Są on bardziej odporne, gdyż ilość opadów bardziej zależy tam od otaczającego lasy oceanu niż od samej pokrywy roślinnej.
      Autorzy badań podkreślają, że nie brali w nich pod uwagę takich czynników jak wycinka lasów na potrzeby rolnictwa czy pozyskiwania drewna.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ślimaki morskie Crepidula marginalis zmieniają płeć, gdy osiągają pewien rozmiar. Okazuje się jednak, że towarzystwo sprawia, że większe samce stają się samicami szybciej, a mniejsze później. Naukowcy z Smithsonian Institution uważają, że nie chodzi o uwalniane do wody związki chemiczne, ale o siłę dotyku.
      Wyniki zrobiły na mnie wrażenie. Byłam przekonana, że do postrzegania świata ślimaki te wykorzystują wskazówki z wody - opowiada Rachel Collin ze Smithsonian Tropical Research Institute.
      C. marginalis żyją pod skałami w strefach międzypływowych. Żywią się, odfiltrowując m.in. plankton. Spotyka się je pojedynczo, parami bądź trójkami; na muszli dużej samicy znajduje się wtedy jeden czy dwa mniejsze samce.
      Samce mają duże penisy. Czasem ich długość dorównuje długości całego ciała. Są one zlokalizowane z prawej strony głowy. Gdy ślimak zmienia płeć, penis stopniowo się kurczy i zanika w momencie wykształcenia żeńskich narządów rozrodczych. Biolodzy uważają, że taki rodzaj zmiany płci jest korzystny, bo jako samice dorodniejsze osobniki są w stanie wyprodukować większą liczbę jaj niż zwykłe samice, zaś małe samce nadal mogą wytwarzać dużo plemników (co istotne, wyprodukowanie plemników jest mniej energochłonne od wytworzenia jaja).
      Podczas eksperymentów dwa nieznacznie różniące się rozmiarami samce trzymano w małych kubkach z wodą morską. W części kubków pozwalano im się dotykać, w reszcie oddzielono je za pomocą siatki.
      Okazało się, że większe ślimaki, które stykały się z drugim samcem, szybciej rosły i zmieniały się w samice niż większe mięczaki oddzielone od kolegi siatką. Dla odmiany mniejsze ślimaki z "kontaktowej" pary odraczały zmianę płci, w porównaniu do drobniejszych zwierząt z grupy siatkowej.
      U zmieniających płeć ryb koralowych ważne są wskazówki wzrokowe, behawioralne i chemiczne. W przypadku prowadzących osiadły tryb życia ślimaków o słabym wzroku spodziewano się, że pierwsze skrzypce będą grały bodźce chemiczne (wiadomo, że oddziałują one na inne aspekty ich zachowania). Ku zaskoczeniu autorów publikacji z The Biological Bulletin okazało się jednak, że C. marginalis przypominają ryby, bo na interakcje i ewentualne wskazówki chemiczne związane z dotykiem reagują silniej niż na sygnały z wody.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dwoma laty Erin Krichilsky ze Smithsonian Tropical Research Institute (STRI) w Panamie badała pszczoły z gatunku Megalopta amoena i ujrzała najbardziej niezwykłego owada w swoim życiu. Przyglądając się pod mikroskopem 4-milimetrowej pszczole zauważyła, że prawa strona jej głowy ma wygląd typowy dla samicy, a lewa – dla samca. Szybko obejrzała resztę ciała owada i stwierdziła to samo. Jego prawa połowa miała ceny typowo żeńskie, lewa zaś – typowo męskie.
      Owad, którego opis ukazał się właśnie w Journal of Hymenoptera Research, to niezwykle rzadki przykład gynandromorfa z dwustronną asymetrią, gdzie jedna strona ciała jest męska, druga zaś żeńska. Gynandromorfizm to przypadek, gdy organizm ma jednocześnie męskie i żeńskie cechy płciowe. Najczęściej jest obserwowany u owadów, chociaż zdarza się też u skorupiaków i ptaków. Gynandromorf z dwustronną asymetrią zdarza się na tyle rzadko, że odkrycie dokonane przez Krichilsky jest pierwszym takim przykładem u Megalopta amoena i zaledwie drugim u Megalopta. Od czasu odkrycia w 1999 roku gynandromorfa z dwustronną asymetrią w gatunku Megalopta genalis, naukowcy z SRTI przeanalizowali dziesiątki tysięcy innych pszczół i dopiero teraz odkryli drugi przykład takiego gynandromorfizmu.
      Gynandromorfów nie należy mylić z hermafrodytami. W tym drugim przypadku osobnik wygląda jak przedstawiciel jednej płci, ale ma organy płciowe obu. Natomiast całe ciało gynandromorfa jest mozaiką obu płci. Jako, że tego typu osobniki są niezwykle rzadkie w naturze, gynandromorfizm jest bardzo słabo rozumiany.
      Pszczoły, osy czy mówki, które należą do rzędu błonkoskrzydłych, mają silnie zróżnicowane role płciowe. Żyją w matriarchalnych społecznościach, w których samice zajmują się wszystkim, budowaniem gniazd, zbieraniem żywności, dbaniem o młode. Zatem są one wyposażone we wszystko, czego potrzebują – silne szczęki, żądła, włoski do przenoszenia pyłku. Samce zajmują się tylko rozmnażaniem. Obie płci łatwo jest więc od siebie odróżnić.
      Zanim gynandromorf odkryty przez Krichilsky padł, naukowcy zdążyli zbadać cykl snu. Okazało się, że owad budzi się wcześniej by żerować niż samce i samice. Trudno jednak z tego wyciągnąć jakiś wniosek, gdyż nie było innych gynandromorfów do porównania. Jednak, jak zauważa Sydney Cameron, entomolog z University of Illinois, który nie brał udziału w badaniach, to już i tak cenne informacje. Większość gynandromorfów jest odkrywanych po śmierci, więc nie ma mowy o przeprowadzeniu badań behawioralnych.
      Wiele, jeśli nie wszystkie gynandromorfy, są prawdopodobnie bezpłodne. Jednak zmiany rozwojowe, które zacierają różnice pomiędzy płciami mogą być istotne z ewolucyjnego punktu widzenia. Na przykład istnieją pewne pasożytnicze pszczoły, u których samice utraciły większość cech typowych dla samic innych gatunków pszczół i wyglądają niemal identycznie co samce.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...