
NASA poszuka śladów ferrowulkanizmu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W 2002 roku w południowej części Morza Północnego odkryto krater Silverpit. Wiek krateru oceniono na 43–46 milionów lat, a naukowcy zaczęli się spierać, co do jego pochodzenia. Międzynarodowy zespół naukowy, pracujący pod kierunkiem doktora Uisdeana Alasdaira Nicholsona z Heriot-Watt University przedstawił analizy, które stanowią najsilniejszy dowód, że krater powstał w wyniku upadku asteroidy.
Trzykilometrowy krater, otoczony 20-kilometrową strefą uskoków znajduje się obecnie 700 metrów pod dnem morskim. Już wstępne badania sugerowały jego kosmiczne pochodzenie. Jednak szybko pojawiły się alternatywne hipotezy. Niektórzy naukowcy uważali, że powstał on w wyniku przemieszczenia się pokładów soli, zdaniem innych, to dowód na zapadnięcie się dna morskiego w wyniku działalności wulkanicznej.
Jako że krater został odkryty w danych sejsmicznych przez pracowników przemysłu naftowego, w 2009 roku odbyła się debata sponsorowana przez BP, w której wzięło udział ponad 100 osób, głównie specjalistów od interpretacji danych sejsmicznych, zatrudnionych przez przemysł naftowy. Po debacie miało miejsce głosowanie, w którym zdecydowana większość zebranych opowiedziała się przeciwko hipotezie o uderzeniu asteroidy. Najnowsze badania pokazują, że nie mieli racji.
Doktor Nicholson, który specjalizuje się w sedymentologii, mówi, że nowe dane sejsmiczne dały wyjątkowy wgląd w krater, a próbki pobrane z odwiertów naftowych ujawniły na tej samej głębokości co krater, obecność kryształów kwarcu i skalenia noszących ślady oddziaływania wielkiego ciśnienia, powstającego przy uderzeniu. Mieliśmy wyjątkowe szczęście, że je znaleźliśmy, to jak poszukiwanie igły w stogu siana. One ostatecznie potwierdzają hipotezę o upadku asteroidy, ponieważ ich struktura mogła powstać wyłącznie wskutek oddziaływania wysokiego ciśnienia spowodowanego uderzeniem, stwierdza uczony.
Autorzy badań stwierdzili, że w dno morskie uderzyła asteroida o średnicy 160 metrów, która pod niewielkim kątem nadleciała z zachodu. W wyniku upadku wielka ilość skał i wody została wyrzucona na 1,5 kilometra w górę, a gdy materiał ten opadł, powstało 100-metrowej wysokości tsunami.
Silverpit jest więc rzadkim przykładem zachowanego krateru uderzeniowego. Zdecydowana struktur tego typu zniknęła w wyniku ruchów tektonicznych i erozji. Obecnie znamy zaledwie około 200 kraterów uderzeniowych na lądach i około 33 pod powierzchnią mórz i oceanów. Ustalenie pochodzenia krateru Silverpit daje więc specjalistom wyjątkową okazję do badania takich struktur i ich wpływu na historię naszej planety.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jądro wewnętrzne Ziemi, sztywne bogate w żelazo ciało stałe o średnicy 1250 kilometrów powoli rośnie, w miarę jak płynne jądro zewnętrzne ochładza się i krystalizuje. Specjaliści od dawna nie mogą dość do porozumienia, kiedy rozpoczął się ten proces. Jedni uważają, że trwa on od ponad 2 miliardów lat, zdaniem innych to proces stosunkowo niedawny, liczący sobie nie więcej niż pół miliarda lat. Badań nie ułatwia fakt, że nie wystarczy po prostu stwierdzić, kiedy materiał jądra schłodził się na tyle, by skrystalizować.
Jeśli założymy, że jądro zbudowane jest z czystego żelaza, to temperatura topnienia żelaza wcale nie musi być punktem odniesienia dla określenia temperatury, w której ono krystalizuje. Tak jak woda może wymagać schłodzenia nawet do -30 stopni Celsjusza zanim spadnie grad, tak i żelazne jądro może potrzebować znacznie niższej temperatury, by krystalizować. Wcześniejsze badania pokazywały, że żelazne jądro musiałoby schłodzić się o 800–1000 stopni Celsjusza poniżej temperatury topnienia zanim skrystalizuje. Jednak symulacje pokazały, że gdyby osiągnęło tak niską temperaturę, doszłoby do gwałtownego wzrostu jądra wewnętrznego i zniknięcia pola magnetycznego Ziemi. Tymczasem badania sejsmiczne oraz badania magnetyzmu skał wykazały, że do takiego wydarzenia nigdy nie doszło.
Autorzy nowych badań uważają, że do powstania stałego jądra wystarczyło, by w przeszłości materiał schłodził się zaledwie o 250 stopni Celsjusza poniżej temperatury topnienia. Jak jednak możliwe jest tak niewielkie schłodzenie – pamiętajmy, że musimy uwzględniać tutaj też olbrzymie ciśnienie wewnątrz Ziemi – i ciągłe istnienie stałego jądra wewnętrznego? Naukowcy odpowiedzieli na to pytanie, symulując obecność w jądrze innych pierwiastków, takich jak krzem, siarka, tlen i węgiel. Każdy z nich istnienie w warstwach położonych powyżej, zatem może istnieć też w jądrze. A musimy tutaj opierać się na symulacjach, bo do samego jądra nie jesteśmy w stanie dotrzeć, by zbadać jego skład chemiczny.
Naukowcy przeprowadzili komputerową symulację jądra składającego się ze 100 000 atomów, które zostaje poddane ciśnieniu takiemu, jak we wnętrzu Ziemi. Śledzili w jaki sposób, w temperaturze stosunkowo niewiele niższej mogą tworzyć się tam zbitki atomów podobne do kryształów, które dały początek krystalizacji.
Badania dały zaskakujący wynik. Okazało się, że krzem i siarka, pierwiastki o których zawsze sądzono, że są obecne w jądrze, spowalniały krystalizację. Innymi słowy, gdyby powszechnie występowały one w jądrze, temperatura musiałaby spaść znacznie bardziej, by zaczęło się tworzyć jądro wewnętrzne. Natomiast obecność węgla przyspieszała krystalizację. Kolejne testy wykazały, że jeśli węgiel stanowi w jądrze 2,4% jego masy, to konieczne byłoby schłodzenie o 420 stopni Celsjusza poniżej temperatury topnienia żelaza. To zbyt dużo. Jeśli jednak węgiel to 3,8% masy jądra, wystarczy temperatura o 266 stopni niższa niż temperatura topnienia. To jedyny zakres, który wyjaśnia zarówno istnienie jądra wewnętrznego, jak i jego obecne rozmiary.
Wyniki badań sugerują, że w jądrze Ziemi węgla jest więcej niż przypuszczano i że bez jego odpowiedniego udziału, mogłoby nie dojść do powstania jądra wewnętrznego.
Ze szczegółowymi wynikami analizy można zapoznać się w artykule Constraining Earth’s core composition from inner core nucleation.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badania próbek asteroidy Bennu dostarczonych na Ziemię przez misję OSIRIS-REx wykazały, że znajdują się tam molekuły, które na Ziemi są niezbędnymi składnikami do powstania życia. Znaleziono też ślady świadczące o obecności słonej wody. Mogła ona być miejscem, w którym dochodziło do interakcji i łączenia się tych molekuł.
NASA zastrzega, że odkrycie nie jest równoznaczne z odkryciem życia na asteroidzie. Sugeruje ono jednak, że we wczesnym Układzie Słonecznym powszechnie istniały warunki niezbędne do powstania życia, a to zwiększa prawdopodobieństwo znalezienia go na innych ciałach niebieskich.
Na łamach Nature i Nature Astronomy ukazały się dwa artykuły, w których naukowcy z NASA i innych instytucji – zarówno z USA, jak i Niemiec, Japonii, Francji, Wielkiej Brytanii czy Australii – omawiają wyniki swoich badań.
W Nature Astronomy zespół prowadzony przez Daniela P. Glavina z NASA informuje, że na asteroidzie zidentyfikowano 14 z 20 podstawowych (kanonicznych) aminokwasów białkowych, z których powstają białkna na Ziemi oraz wszystkie pięć podstawowych zasad azotowych nukleotydów, które ziemskie organizmy żywe wykorzystują do przechowywania i przekazywania informacji genetycznej. Odnotowano też bardzo wysoki poziom amoniaku. Jest on bardzo ważny z punktu widzenia biologii, gdyż reaguje z formaldehydem – również znalezionym w próbkach z Bennu – i w odpowiednich warunkach tworzy bardziej złożone molekuły, jak aminokwasy.
Wszystkie elementy niezbędne do powstania życia, które znaleziono na Bennu, zidentyfikowano już wcześniej na innych skałach pochodzenia kosmicznego. Tym razem jednak mamy dziewicze próbki pobrane w przestrzeni kosmicznej, co wspiera hipotezę mówiącą, że obiekty, które powstały z dala od Słońca, mogły być waźnym źródłem rozprzestrzeniania się życiodajnych molekuł po Układzie Słonecznym.
Glavin i jego koledzy szukali molekuł niezbędnych do powstania życia. Tymczasem Tim J. McCoy, kurator zbiorów meteorytów z Narodowego Muzeum Historii Naturalnej, szukał na Bennu informacji o środowisku, w jakim molekuły te powstały. Wraz z zespołem informuje na łamach Nature o znalezieniu 11 minerałów, które powstają, gdy zawierające sole woda odparowuje przez długi czas, pozostawiając po sobie kryształy soli. Podobne co na Bennu solanki prawdopodobnie istnieją na planecie karłowatej Ceres oraz księżycu Saturna, Enceladusie.
Naukowcy już wcześniej wykrywali na znalezionych na Ziemi meteorytach różne produkty takiego odparowywania, jednak dotychczas nie mieli okazji badać ostatecznych produktów takiego odparowywania trwającego przez tysiące lub więcej lat. Na Bennu znaleziono też kilka minerałów, w tym sodę naturalną, tzw. tronę, których nigdy wcześniej nie zaobserwowano na próbkach pochodzących spoza Ziemi.
Badania dostarczają wielu nowych informacji, ale pozostawiają bez odpowiedzi liczne pytania. Niemal wszystkie aminokwasy są chiralne, a więc występują w dwóch wariantach, będących swoim lustrzanym odbiciem. Organizmy żywe na Ziemi wykorzystują wyłącznie konformację L- (są lewostronne). Tymczasem na Bennu występowały one w postaci mieszaniny racemicznej, czyli zawierającej równe ilości obu wariantów. To najprawdopodobniej oznacza, że na wczesnej Ziemi aminokwasy również występowały w postaci takich mieszanin. Zatem wciąż jest tajemniczą, dlaczego życie wybrało lewo-, a nie prawostronność.
Misja OSIRIS-REx została wystrzelona w 2016 roku. W 2020 informowaliśmy, że padła ofiarą własnego sukcesu i pobrała tak dużo próbek, iż pojemnik się nie zamyka, więc NASA musi znaleźć awaryjne rozwiązanie problemu. Próbki trafiły na Ziemię w 2023 roku. W międzyczasie zaś, gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. W końcu zdecydowano, że pojazd poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
Przemianowana na OSIRIS-APEX misja będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.