Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Regeneracja głowy z mózgiem to niedawno nabyta zdolność

Recommended Posts

Regeneracja amputowanych części ciała jest rzadka, jednak występuje w świecie zwierząt. U salamander, pająków czy rozgwiazd mogą odrastać kończyny, czułki i inne zewnętrzne części ciała, a u wstężnic dochodzi do regeneracji całego osobnika z niewielkiego fragmentu ciała. Dotychczas sądzono, że zdolność do regeneracji wyewoluowała bardzo dawno. Jednak naukowcy poinformowali właśnie o odkryciu czterech gatunków wstężnic, które niezależnie od siebie wyewoluowały niedawno zdolność do regeneracji głowy wraz z mózgiem.

To oznacza, że gdy porównujemy grupy zwierząt, nie możemy zakładać, że podobne zdolności regeneracyjne są stare i oznaczają, że zwierzęta te mają wspólnych przodków. Musimy być bardziej ostrożni podczas porównywania zdolności regeneracyjnych różnych grup zwierząt, mówi profesor Alexandra Bely z University of Maryland.

Każde zwierzę, nawet człowiek, ma pewne zdolności regeneracyjne. Jednak te grupy, który zróżnicowały się na bardzo wczesnych etapach ewolucji, jak gąbki czy stułbiopławy odznaczają się znacznie większymi zdolnościami do regeneracji. Gdy zwierzęta stawały się coraz bardziej złożone, zdolności regeneracyjne były coraz rzadsze i coraz bardziej ograniczone.
Do niedawna naukowcy badali ewolucję zdolności regeneracyjnych opierając sie na badaniach zwierząt, które zdolności te utraciły. Działo się tak, gdyż zdolności te pojawiły się tak dawno, ze trudno było śledzić początki tych zdolności.

W ramach najnowszych badań naukowcy zebrali wstężnice u wybrzeży USA, Argentyny, Hiszpanii i Nowej Zelandii. Przeprowadzali na nich eksperymenty, krojąc zwierzęta i obserwując, jak się regenerują.

Wszystkie zebrane gatunki były w stanie regenerować się całkowicie od przednich części ciała. Jednak tylko osiem było w stanie przeprowadzić regenerację od tylnych części, regenerując głowę wraz z mózgiem. Cztery z tych gatunków było wcześniej znanych, cztery to gatunki nieznane.

Największym zaskoczeniem był fakt, że wiele gatunków nie było w stanie zregenerować głowy. Już z badań prowadzonych w latach 30. ubiegłego wieku wiemy, że Lineus sanguineus jest w stanie zregenerować całe ciało wraz z głową z zaledwie 1/200000 części dorosłego osobnika. Przypadek ten sprawił, że cały typ tych stworzeń uznano za mistrzów regeneracji. Naturalnym było przypuszczenie, że zdolność ta jest bardzo stara i pochodzi od wspólnego przodka. Jednak najnowsze badania pokazały, że posiada ją jedynie 8 z 35 zbadanych gatunków. Naukowcy przeanalizowali więc ewolucję zdolności regeneracyjnych i stwierdzili, że pojawiły się one niedawno.

Pierwsze zdolności regeneracyjne pochodzą sprzed kambru, zatem sprzed ponad 500 milionów lat, jednak u zbadanych gatunków, które są w stanie regenerować głowę, niektóre z tych cech pojawiły się zaledwie 10–15 milionów lat temu.
Naukowcy zauważyli, że niektóre z gatunków, które nie potrafiły regenerować głowy, były w stanie przeżyć bez niej wiele miesięcy. Ta zdolność może być prekursorem umiejętności regeneracji głowy, gdyż umiejętność tak długiego przeżycia daje wystarczająco dużo czasu, by amputowana część ciała mogła odrosnąć.

Najnowsze badania pozwolą lepiej zrozumieć ewolucję procesu regeneracji, a to z kolei może przydać się w medycynie regeneracyjnej.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Najprawdopodobniej tak samo jak w przypadku pierścienic — nie.

Share this post


Link to post
Share on other sites

Naliczylem 24 regeneracje w roznych odmianach :rolleyes: trzeba zregenerowac artykuł... tfu... zredagowac ;)

Share this post


Link to post
Share on other sites
W dniu 10.03.2019 o 07:23, bea napisał:

czyli że powstanie 5 różnych osobników, czy tylko jeden kawałek się zregeneruje?

Jeden, ten sam. ;) Choć w przypadku tak prostego układu nerwowego nie wiem czy jest tutaj jakieś rozróżnienie.

W dniu 7.03.2019 o 11:34, KopalniaWiedzy.pl napisał:

u wstężnic dochodzi do regeneracji całego osobnika z niewielkiego fragmentu ciała

W dniu 7.03.2019 o 11:34, KopalniaWiedzy.pl napisał:

Wszystkie zebrane gatunki były w stanie regenerować się całkowicie od przednich części ciała. Jednak tylko osiem było w stanie przeprowadzić regenerację o tylnych części, regenerując głowę wraz z mózgiem

Musi pozostać część, która jest w stanie przetrwać i się zregenerować. To nie jest klonowanie. ;)

Share this post


Link to post
Share on other sites

Z tego co czytam to w przypadku Lineus sanguineus faktycznie jest to sztuczne użycie (czy nadużycie) jego mechanizmu reprodukcji.

Cytat

However, it is able to regenerate itself from any fragment that is at least half as long as the worm's diameter; each piece can develop into a complete new worm in three to four weeks.[2] In fact this appears to be a form of asexual reproduction, the worm dividing along pre-arranged fracture lines; tiny pieces may form cysts, with the new worms developing inside these.[6]

Pączkuje. ;-)

Aczkolwiek wedle https://www.sealifebase.ca/summary/Lineus-sanguineus.html wynika, że faktycznym sposobem rozmnażania jest składanie jaj.

  • Like (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Tapiry amerykańskie (Tapirus terrestris), a właściwie ich odchody, mogą być kluczem do odtworzenia lasów deszczowych w południowo-wschodniej Amazonii, którym zagrażają fragmentacja, pożary podszytu czy ekstremalne zdarzenia klimatyczne. By przedsięwzięcie się udało, tapiry muszą jednak wesprzeć koprofagi.
      Prof. Lucas Paolucci z Instituto de Pesquisa Ambiental da Amazônia Paolucci, współautor artykułu z pisma Biotropica z marca zeszłego roku, podkreśla, że odchody tapirów są pełne nasion. Tapiry są znane jako ogrodnicy lasów. Żerują na owocach ponad 300 gatunków roślin, a później przemieszczają się po dżungli z żołądkiem pełnym nasion, w tym należących do dużych, magazynujących dwutlenek węgla drzew.
      W 2016 r. Paolucci dołączył do badaczy analizujących rolę tapirów w regeneracji siedlisk leśnych zmienionych/zniekształconych (dotkniętych zjawiskami klęskowymi). Ekipa przeprowadziła eksperyment we wschodnim Mato Grosso, gdzie w latach 2004-10 dwie powierzchnie leśne wypalano według różnych schematów: jedną palono każdego roku, a drugą co trzy lata. Trzecie poletko (kontrolne) zostawiano nietknięte.
      Naukowcy odnotowali położenie 163 kupek nawozu i porównywali je z nagraniami tapirów z kamer pułapkowych. Następnie oddzielili z odchodów nasiona, łącznie 129.204 (należały one do 24 gatunków roślin). Nagrania pokazały, że tapiry spędzały na spalonych obszarach o wiele więcej czasu niż w nietkniętym lesie. Paolucci sądzi, że prawdopodobnie korzystają ze słońca. Co więcej, T. terrestris znacznie częściej wypróżniały się na spalonym obszarze, zostawiając tam ponad 3-krotnie więcej nasion w przeliczeniu na hektar (9.822/ha vs. 2950/ha).
      Kilka miesięcy po publikacji wyników, w sierpniu zeszłego roku, w Amazonii wybuchła seria pożarów o niespotykanym nasileniu. To w jeszcze większym stopniu zmotywowało Paolucciego do zrozumienia roli tapirów w regeneracji lasów. Paolucci wiedział jednak, że tapiry nie zrobią wszystkiego same. Muszą im pomóc koprofagi, które roznoszą odchody, a przy okazji nasiona. Jak napisał Paolucci w przesłanym nam mailu, pomóc może właściwie każdy gatunek usuwający nawóz, a w konsekwencji nasiona.
      Owady zakopują małe grudki odchodów jako zapasy na później, a to jak można się domyślić, wspomaga kiełkowanie nasion.
      Na początku 2019 r. Paolucci wrócił do Amazonii, by zebrać 20 kg odchodów tapirów. Podzielił je później na 700-g kupki. Do każdej włożył koraliki z tworzywa sztucznego, które miały przypominać nasiona. Na końcu przetransportował wszystko z powrotem w teren. Po upływie doby naukowiec zebrał resztki i policzył, ile koralików zostało. Brakujące zostały zapewne rozniesione przez chrząszcze. Paolucci liczy, że wyniki jego badań zostaną opublikowane w przyszłym roku.
      Amazońscy ranczerzy są zazwyczaj zobowiązani do zachowania na swoim terenie 80% naturalnej pokrywy leśnej, jednak wiele drzew jest wycinanych nielegalnie, a nowe nasadzenia nie mają już miejsca. Tapiry mogą, wg profesora, być tanim sposobem na wspomaganie reforestacji.
      Naukowcy przypominają jednak, że liczebność populacji tapira amerykańskiego, jedynego szeroko rozpowszechnionego tapira w Amazonii, spada i obecnie gatunek jest uznawany za narażony na wyginięcie. Dzieje się tak przez utratę habitatu i polowania.
       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kwas ursolowy, który występuje m.in. w skórce jabłek, w żurawinie czy w ziołach, np. szałwii lekarskiej, zatrzymuje uszkodzenia i wspiera procesy naprawy w stwardnieniu rozsianym (SR). Działa więc zarówno immunomodulująco, jak i neuroregeneracyjnie.
      Badania przeprowadzone na modelu mysim oraz ex vivo pokazują, że naturalny przeciwzapalny triterpen kwas ursolowy ogranicza dalsze uszkodzenia i pomaga odbudować osłonkę mielinową.
      Chociaż dowody są na razie wstępne - dane pochodzą ze zwierzęcego modelu choroby - zachęcająco jest widzieć związek, który zarówno zatrzymuje postępy SR, jak i naprawia uszkodzenia w laboratorium - podkreśla prof. Guang-Xian Zhang z Uniwersytetu Thomasa Jeffersona. Potrzebne są kolejne badania dot. bezpieczeństwa tego związku - dodaje dr A.M. Rostami.
      Naukowcy wykorzystali oczyszczoną postać kwas ursolowego. W wielu eksperymentach analizowano przypadki myszy w fazie ostrej [...]. My zaś testowaliśmy, czy kwas ursolowy jest skuteczny w fazie chronicznej, gdy występują już przewlekłe uszkodzenia tkanki ośrodkowego układu nerwowego.
      Amerykanie wykorzystali mysi model SR, który rozwija się powoli w ciągu życia, oddając przebieg choroby u ludzi. Około 12. dnia u myszy rozpoczyna się faza ostra, gdy pojawiają się symptomy, takie jak częściowy paraliż, i gdy dostępne obecnie leki są najskuteczniejsze. Naukowcy rozpoczęli jednak terapię dopiero 60. dnia, na o wiele bardziej zaawansowanym etapie choroby, gdy w mózgu i rdzeniu rozwinęły się już przewlekłe uszkodzenia tkanek.
      Autorzy publikacji z pisma PNAS leczyli gryzonie przez 60 dni. Poprawa zaczęła być widoczna po 20 dniach terapii. Myszy, które były sparaliżowane na początku eksperymentu, odzyskały zdolność chodzenia (z pewnymi problemami).
      To nie lekarstwo, ale jeśli zobaczymy podobną reakcję u ludzi, mogłaby to być znacząca zmiana jakości życia. Najważniejsze jest odwrócenie objawów, którego przy innych terapeutykach nie widzieliśmy na tak późnym etapie choroby - podkreśla Zhang.
      Naukowcy oceniali, jak kwas ursolowy wpływa na komórki. Zaobserwowali, że hamuje limfocyty Th17, które odgrywają ważną rolę w patologicznej reakcji autoimmunologicznej w SR. Dodatkowo triterpen ten aktywuje komórki prekursorowe, by dojrzewały w wytwarzające osłonki mielinowe oligodendrocyty. Ten efekt jest najważniejszy. Oligodendrocytów jest w SR za mało, a komórki, z których powstają, są uśpione i niezdolne do dojrzewania. Kwas ursolowy pomaga je aktywować [...].
      Następnym etapem badań mają być testy bezpieczeństwa. Kwas ursolowy jest dostępny jako suplement, ale w większych dawkach może być toksyczny. Przed rozpoczęciem pierwszych testów klinicznych czeka nas jeszcze sporo badań - podsumowuje Rostami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Clostridioides difficile to przyczyna jednego z najczęstszych zakażeń szpitalnych - biegunki poantybiotykowej. Biegunka ta może się rozwinąć do rzekomobłoniastego zapalenia jelit i rozdęcia okrężnicy. Często kończy się to śmiercią. Ostatnio naukowcy odkryli, że toksyna C. difficile uszkadza komórki macierzyste okrężnicy (ang. colonic stem cells, CoSC), przez co nie wykonują one swojego zadania - nie regenerują wyściółki jelita. To groźne zjawisko, zwłaszcza dla starszych osób.
      [...] Toksyna B (TcdB) obiera na cel CoSC i bezpośrednio je uszkadza - wyjaśnia prof. Dena Lyras z Monash University. Upośledza to naprawę tkanek jelita i proces zdrowienia. Podczas gdy normalnie proces regeneracji wyściółki jelita zajmuje 5 dni, tu może potrwać [nawet] ponad 2 tygodnie. Wskutek tego pacjenci, zwłaszcza w wieku powyżej 65 lat i z chorobami współistniejącymi, są narażeni na ból, zagrażającą życiu biegunkę i inne poważne problemy.
      Rozumiejąc ten nowy mechanizm uszkodzenia i naprawy, być może będziemy w stanie znaleźć metodę zapobiegania uszkodzeniu albo opracować nowe terapie - uważa dr Thierry Jardé.
      D. difficile może być transmitowana ze zwierząt na ludzi i na odwrót. Jest też ujawniana u pacjentów, którzy nie byli ostatnio w szpitalu ani nie przeszli antybiotykoterapii.
      Nasze badanie zapewnia pierwsze bezpośrednie dowody, że zakażenie zmienia sprawność funkcjonalną komórek macierzystych jelita. Pozwala nam ono nieco lepiej zrozumieć naprawę jelita po infekcji i ustalić, czemu superbakteria powoduje tak ciężkie uszkodzenia. Ma to tym większe znaczenie, że nasze możliwości antybiotykoterapii coraz bardziej się wyczerpują i dlatego musimy znaleźć inne metody zapobiegania i leczenia tych zakażeń - dodaje prof. Helen Abud.
      Naukowcy uważają, że wyniki mogą się także odnosić do innych podobnie przebiegających infekcji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chrząstka w ludzkich stawach może regenerować się w procesie podobnym do tego, w jakim salamandrom odrastają utracone kończyny, donoszą naukowcy z Duke University. W ostatnim numerze Science Advances opisali oni mechanizm odtwarzania się tkanki chrzęstnej. Wydaje się, że lepiej działa on w stawie skokowym, a gorzej w stawie biodrowym. Zrozumienie mechanizmu regeneracji może doprowadzić do opracowania metod leczenia choroby zwyrodnieniowej stawów, najbardziej rozpowszechnionej na świecie choroby atakującej stawy u człowieka.
      W nowo utworzonych proteinach w tkankach występuje mało lub wcale konwersji aminokwasów. W starych białkach jest ich bardzo wiele. Profesor Virginia Byers Kraus i jej zespół wykorzystali spektrometrię mas do zbadania wieku kluczowych protein, w tym kolagenu, w ludzkiej tkance chrzęstnej. Okazało się, że wiek tkanki zależał w dużym stopniu od tego, gdzie się ona znajdowała. Chrząstka w stawie skokowym była młoda, w stawie kolanowym była w średnim wieku, a w stawie biodrowym była stara. Ten wiek i lokalizacja ludzkiej tkanki chrzęstnej wykazuje korelację ze sposobem regeneracji kończyn u niektórych zwierząt, którym łatwiej regenerują się ostatnie segmenty kończyn czy ogonów.
      Odkrycie to wyjaśnia również, dlaczego zranione kolano, a szczególnie biodro, regeneruje się dłużej i częściej uraz prowadzi do zapalenia stawów niż w przypadku kostki.
      Cały proces regeneracji jest regulowany przez mikroRNA, które jest bardziej aktywne u zwierząt zdolnych do regeneracji kończyn. Okazało się, że u ludzi mikroRNA jest bardziej aktywne w kostkach, niż w kolanach czy biodrach i bardziej aktywne w wyższych warstwach tkanki chrzęstnej niż w tych położonych głębiej.
      To niesamowite, że mechanizmy regulujące regeneracje kończyn u salamander wydają się być również odpowiedzialne za naprawę tkanki chrzęstnej u ludzi, mówi doktor Ming-Feng Hsueh.
      Sądzimy, że możliwe jest pobudzenie tych mechanizmów regulujących tak, by doprowadziły do pełnej regeneracji chrząstki w stawie. Jeśli uda nam się dowiedzieć, które z mechanizmów regulujących wykorzystuje salamandra, a nie mamy ich my, to być może będziemy nawet w stanie w przyszłości pozyskać te mechanizmy i doprowadzić do częściowej lub całkowitej regeneracji ludzkiej kończyny. Sądzimy bowiem, że jest to mechanizm, który można zastosować do naprawy wielu różnych tkanek, nie tylko tkanki chrzęstnej, stwierdza Kraus.

      « powrót do artykułu
×
×
  • Create New...