Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Regeneracja głowy z mózgiem to niedawno nabyta zdolność

Recommended Posts

Regeneracja amputowanych części ciała jest rzadka, jednak występuje w świecie zwierząt. U salamander, pająków czy rozgwiazd mogą odrastać kończyny, czułki i inne zewnętrzne części ciała, a u wstężnic dochodzi do regeneracji całego osobnika z niewielkiego fragmentu ciała. Dotychczas sądzono, że zdolność do regeneracji wyewoluowała bardzo dawno. Jednak naukowcy poinformowali właśnie o odkryciu czterech gatunków wstężnic, które niezależnie od siebie wyewoluowały niedawno zdolność do regeneracji głowy wraz z mózgiem.

To oznacza, że gdy porównujemy grupy zwierząt, nie możemy zakładać, że podobne zdolności regeneracyjne są stare i oznaczają, że zwierzęta te mają wspólnych przodków. Musimy być bardziej ostrożni podczas porównywania zdolności regeneracyjnych różnych grup zwierząt, mówi profesor Alexandra Bely z University of Maryland.

Każde zwierzę, nawet człowiek, ma pewne zdolności regeneracyjne. Jednak te grupy, który zróżnicowały się na bardzo wczesnych etapach ewolucji, jak gąbki czy stułbiopławy odznaczają się znacznie większymi zdolnościami do regeneracji. Gdy zwierzęta stawały się coraz bardziej złożone, zdolności regeneracyjne były coraz rzadsze i coraz bardziej ograniczone.
Do niedawna naukowcy badali ewolucję zdolności regeneracyjnych opierając sie na badaniach zwierząt, które zdolności te utraciły. Działo się tak, gdyż zdolności te pojawiły się tak dawno, ze trudno było śledzić początki tych zdolności.

W ramach najnowszych badań naukowcy zebrali wstężnice u wybrzeży USA, Argentyny, Hiszpanii i Nowej Zelandii. Przeprowadzali na nich eksperymenty, krojąc zwierzęta i obserwując, jak się regenerują.

Wszystkie zebrane gatunki były w stanie regenerować się całkowicie od przednich części ciała. Jednak tylko osiem było w stanie przeprowadzić regenerację od tylnych części, regenerując głowę wraz z mózgiem. Cztery z tych gatunków było wcześniej znanych, cztery to gatunki nieznane.

Największym zaskoczeniem był fakt, że wiele gatunków nie było w stanie zregenerować głowy. Już z badań prowadzonych w latach 30. ubiegłego wieku wiemy, że Lineus sanguineus jest w stanie zregenerować całe ciało wraz z głową z zaledwie 1/200000 części dorosłego osobnika. Przypadek ten sprawił, że cały typ tych stworzeń uznano za mistrzów regeneracji. Naturalnym było przypuszczenie, że zdolność ta jest bardzo stara i pochodzi od wspólnego przodka. Jednak najnowsze badania pokazały, że posiada ją jedynie 8 z 35 zbadanych gatunków. Naukowcy przeanalizowali więc ewolucję zdolności regeneracyjnych i stwierdzili, że pojawiły się one niedawno.

Pierwsze zdolności regeneracyjne pochodzą sprzed kambru, zatem sprzed ponad 500 milionów lat, jednak u zbadanych gatunków, które są w stanie regenerować głowę, niektóre z tych cech pojawiły się zaledwie 10–15 milionów lat temu.
Naukowcy zauważyli, że niektóre z gatunków, które nie potrafiły regenerować głowy, były w stanie przeżyć bez niej wiele miesięcy. Ta zdolność może być prekursorem umiejętności regeneracji głowy, gdyż umiejętność tak długiego przeżycia daje wystarczająco dużo czasu, by amputowana część ciała mogła odrosnąć.

Najnowsze badania pozwolą lepiej zrozumieć ewolucję procesu regeneracji, a to z kolei może przydać się w medycynie regeneracyjnej.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Czyli jak potną taką wstężnicę na 5 kawałków, to powstanie 5 identycznych osobników?

  • Like (+1) 1

Share this post


Link to post
Share on other sites

Najprawdopodobniej tak samo jak w przypadku pierścienic — nie.

Share this post


Link to post
Share on other sites

@wilk - czyli że powstanie 5 różnych osobników, czy tylko jeden kawałek się zregeneruje? Jeśli tylko jeden, to który i dlaczego? Bo u pierścienic podejrzewam, że zregeneruje się tylko ten z głową, ale skoro wg artykułu wstężnice potrafią nawet głowę odtworzyć i do tego "zregenerować całe ciało wraz z głową z zaledwie 1/200000 części dorosłego osobnika", to jednak byłoby dziwne, gdyby z pięciu części powstał tylko jeden osobnik...

Share this post


Link to post
Share on other sites

Naliczylem 24 regeneracje w roznych odmianach :rolleyes: trzeba zregenerowac artykuł... tfu... zredagowac ;)

Share this post


Link to post
Share on other sites
W dniu 10.03.2019 o 07:23, bea napisał:

czyli że powstanie 5 różnych osobników, czy tylko jeden kawałek się zregeneruje?

Jeden, ten sam. ;) Choć w przypadku tak prostego układu nerwowego nie wiem czy jest tutaj jakieś rozróżnienie.

W dniu 7.03.2019 o 11:34, KopalniaWiedzy.pl napisał:

u wstężnic dochodzi do regeneracji całego osobnika z niewielkiego fragmentu ciała

W dniu 7.03.2019 o 11:34, KopalniaWiedzy.pl napisał:

Wszystkie zebrane gatunki były w stanie regenerować się całkowicie od przednich części ciała. Jednak tylko osiem było w stanie przeprowadzić regenerację o tylnych części, regenerując głowę wraz z mózgiem

Musi pozostać część, która jest w stanie przetrwać i się zregenerować. To nie jest klonowanie. ;)

Share this post


Link to post
Share on other sites
Posted (edited)

@wilk - nie pisałam o klonowaniu, ale gdyby każdy fragment się zregenerował, to chyba siłą rzeczy wszystkie te osobniki byłyby identyczne pod względem genetycznym? Skoro są gatunki, które potrafią zregenerować się z tylnych części ciała i z bardzo małego fragmentu (1/200000 części), to nadal nie rozumiem, dlaczego po przecięciu na 5, miałby się odtworzyć tylko jeden? Co decyduje o tym, który fragment jest w stanie przetrwać i się zregenerować, jeśli nie głowa? Dlaczego nie mogą przetrwać i zregenerować się wszystkie? Nie widzę powodu... Przecież nie głosują między sobą, który ma się zregenerować, a który nie i "ej, ja się regeneruję, to wy już nie możecie, bo musi być only one" ;)

Edited by bea

Share this post


Link to post
Share on other sites

Z tego co czytam to w przypadku Lineus sanguineus faktycznie jest to sztuczne użycie (czy nadużycie) jego mechanizmu reprodukcji.

Cytat

However, it is able to regenerate itself from any fragment that is at least half as long as the worm's diameter; each piece can develop into a complete new worm in three to four weeks.[2] In fact this appears to be a form of asexual reproduction, the worm dividing along pre-arranged fracture lines; tiny pieces may form cysts, with the new worms developing inside these.[6]

Pączkuje. ;-)

Aczkolwiek wedle https://www.sealifebase.ca/summary/Lineus-sanguineus.html wynika, że faktycznym sposobem rozmnażania jest składanie jaj.

  • Like (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)

@Dominik Machowski podobno nos i uszy rosną przez całe życie, więc może to dlatego? (znów wyczerpałam limit serduszek :( )

A dzieciom mogą odrastać odcięte palce

Edited by bea

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Badania na niewielkiej grupie ochotników po raz pierwszy przyniosły wyniki, które można uznać za odwrócenie działania zegara epigenetycznego. W ramach badań prowadzonych przez uczonych z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) dziewięciu zdrowych ochotników przez rok przyjmowało koktajl złożony z trzech ogólnie dostępnych leków – hormonu wzrostu i dwóch leków przeciwcukrzycowych. Późniejsza analiza genomu wykazała, że średni wiek biologiczny uczestników badani zmniejszyl się o 2,5 roku. Oznaki odmłodzenia zauważono również w układzie odpornościowym badanych.
      Uzyskane wyniki zaskoczyły nawet samych badaczy. Spodziewałem się spowolnienia zegara biologicznego, ale nie odwrócenia jego działania. To coś przyszłościowego, mówi genetyk Steve Horvath, który prowadził analizę epigenetyczną. Autorzy badań ostrzegają jednak przed zbytnim entuzjazmem, gdyż były one prowadzone na małej próbie i nie było grupy kontrolnej. Być może uzyskano pozytywne wyniki. Jednak nie można ich uznać za bardzo solidne, gdyż grupa była mała i nie były to dobrze kontrolowane badania, zauważa biolog Wolfgang Wagner z Uniwersytetu w Aachen.
      Zegar epigenetyczny korzysta z epigenomu, czyli pełnego zestawu modyfikacji chemicznych DNA oraz białek histonów. Wzorce tych modyfikacji zmieniają się w czasie życia i podążają za wiekiem biologicznym danej osoby, który może być mniejszy lub większy niż jej wiek mierzony samym upływem czasu. Naukowcy odtwarzają zegar epigenetyczny wybierając z genomu miejsca metylacji DNA. W ciągu ostatnich lat Horvath, który jest pionierem badań zegara epigenetycznego, stworzył jedne z najbardziej precyzyjnych technik korzystania z tego zegara.
      Opisywane badania zorganizowano głównie po to, by sprawdzić, czy hormon wzrostu może być bezpiecznie stosowany w celu odtworzenia tkanki grasicy. Jest ona kluczowym narządem dla wydajnego działania układu odpornościowego. Wytwarzane w szpiku leukocyty dojrzewają wewnątrz grasicy, gdzie przekształcają się w wyspecjalizowane leukocyty T, zwalczające infekcje czy nowotwory. Jednak po okresie dojrzewania grasica zaczyna się kurczyć i jest coraz bardziej zapychana przez tłuszcz.
      Wcześniejsze badania na zwierzętach i ludziach sugerowały, że hormon wzrostu może stymulować regenerację grasicy. Problem jednak w tym, że hormon ten stymuluje również rozwój cukczycy. Dlatego też obok hormonu ochotnikom podawno dehydroepiandrosteron (DHEA) oraz metforminę.
      W badaniach Thymus Regeneration, Immunorestoration and Insulin Mitigation (TRIIM) prowadzonych przez immunologa Gergory'ego Fahy'ego wzięło udział 9 ochotników. Wszyscy to biali mężczyźni w wieku 51–65 lat.
      Fahy zainteresował się grasicą w latach 80., gdy dowiedział się o wynikach badań, w ramach których naukowcy wszczepili szczurom komórki wydzielające hormon wzrostu, a uzyskane wyniki sugerowały, że układ odpornościowy zwierząt uległ odmłodzeniu. Naukowca zdziwiło, że nikt nie podążył tym śladem i nie przeprowadził badań na ludziach. Zaczął więc badać grasicę. Mniej więcej 10 lat później, gdy miał 46 lat przez miesiąc aplikował sobie hormon wzrostu oraz DHEA i odkrył, że jego grasica nieco się zregenerowała.
      Podczas badań TRIIM uczeni sprawdzali u uczestników liczbę białych ciałek krwi. Stwierdzili, że uległa ona zwiększeniu do liczby typowej dla młodszej osoby. Ponadto na początku i na końcu badań wykonali obrazowanie grasicy za pomocą rezonansu magnetycznego. Zauważyli, że u 7 z 9 badanych zgromadzony w grasicy tłuszcz został zastąpiony przez zregenerowaną tkankę grasicy.
      Fahy wpadł wówczas na pomysł sprawdzenia zegara epigenetycznego badanych i poprosił o pomoc Horvatha. Ten zastosował cztery różne metody oceny wieku biologicznego każdego z pacjentów i za każdym razem odkrył jego znaczące obniżenie. To oznacza duży wpływ biologiczny zastosowanej terapii, mówi Horvath. Co więcej, efekt odmłodzenia nadal utrzymywał się u sześciu osób, które pół roku po zakończeniu testu oddały krew do ponownego przebadania. "Jako, że zmiany te zauważyliśmy u każdego z badanych i są one bardzo wyraźne, jestem optymistycznie nastawiony do uzyskanych wyników", mówi Horvath.
      Naukowcy planują teraz przeprowadzenie szerzej zakrojonych badań, do których chcą zaangażować osoby w różnym wieku, z różnych grup etnicznych oraz obu płci. Jak zauważa Horvath, metody regeneracji grasicy mogą być niezwykle użyteczne dla osób o upośledzonym układzie odpornościowym, w tym dla osób starszych. Infekcje są bowiem jedną z najważniejszych przyczyn zgonów osób po 70. roku życia. Z uzyskanych wyników cieszy się też Sam Palmer, specjalista od immunologii onkologicznej. Zauważa on, że poprawienie funkcjonowania układu odpornościowego będzie miało istotny wpływ na leczenie nie tylko infekcji, ale również nowotworów oraz chorób związanych ze starzeniem się.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komórki macierzyste łożyska, zwane Cdx2, regenerują komórki serca po zawale, donoszą naukowcy z Icahn School of Medicine. Ich odkrycie może przyczynić się do powstania nowych standardów leczenia chorób kardiologicznych.
      Dotychczas sądzono, że komórki Cdx2 regenerują jedynie łożysko podczas wczesnego rozwoju embrionalnego. Nigdy nie wykazano ich zdolności do regenerowania innych organów, dlatego to takie ekscytujące. Odkrycie to może przyczynić się do powstania terapii regeneracji innych organów niż serce. One są superbohaterami świata komórek macierzystych w tym sensie, że potrafią namierzyć miejsce uszkodzenia i dotrzeć bezpośrednio do niego podróżując wzdłuż układu krążenia oraz potrafią uniknąć odrzucenia przez układ odpornościowy gospodarza, mówi główna autorka badań, doktor Hina Chaudhry.
      Już wcześniej specjaliści z Mount Sinai zauważyli, że różnorodna populacja komórek macierzystych z mysiego łożyska pomaga w naprawie uszkodzonego serca ciężarnej myszy. Podczas najnowszych badań wykazali, że komórki macierzyste z łożyska wędrują bezpośrednio do miejsca uszkodzenia i tam zmieniają się w komórki serca. Celem naukowców było zbadanie, które konkretnie komórki biorą udział w regeneracji serca. Na początku przyjrzeli się komórkom Cdx2, gdyż były one najczęściej występującymi komórkami podczas wcześniejszych badań. Odkryli, że to właśnie Cdx2 stanowią aż 40% wszystkich komórek biorących udział w regeneracji mięśnia sercowego.
      Aby przetestować właściwości Cdx2 naukowcy wywołali atak serca u trzech grup samców myszy. Jednej z nich wstrzyknięto komórki Cdx2 pobrane z łożyska pod koniec ciąży, drugiej wstrzyknięto komórki łożyska, które nie były komórkami Cdx2, a trzeciej podano sól fizjologiczną. Myszy zbadano za pomocą rezonansu magnetycznego natychmiast po ataku serca oraz trzy miesiące po podaniu komórek lub soli fizjologicznej.
      Okazało się, że u wszystkich myszy, którym podano komórki Cdx2 doszło do znaczącej regeneracji mięśnia sercowego. W ciągu trzech miesięcy komórki Cdx2 zdołały migrować bezpośrednio do miejsca uszkodzenia, gdzie utworzyły nowe naczynia krwionośne i kardiomiocyty. U pozostałych dwóch grup myszy nie zauważono żadnych oznak regeneracji.
      Naukowcy zauważyli jeszcze dwie bardzo istotne właściwości Cdx2. Zawierały one wszystkie proteiny embrionalnych komórek macierzystych, co oznacza, że prawdopodobnie mogą regenerować dowolny organ. Ponadto zawierały dodatkowe proteiny, dzięki którym mogły wędrować bezpośrednio do miejsca uszkodzenia, czego zwykłe komórki nie potrafią, ponadto były w stanie unikać układu immunologicznego gospodarza. Po ich wstrzyknięciu nie dochodziło do odrzucenia komórek.
      To kluczowe właściwości dla rozwoju terapii wykorzystujących ludzkie komórki macierzyste. Byliśmy w stanie wyizolować komórki Cdx2 również z ludzkich łożysk. Mamy nawieję, że dzięki temu opracujemy lepsze niż dotychczas metody leczenia mięśnia sercowego. Do tej pory testowano na ludziach terapie z użyciem komórek, o których z góry nie było wiadomo, czy utworzą komórki serca oraz używano komórek embrionów, co rodziło problemy etyczne oraz problemy z ich dostępnością. Tymczasem na całym świecie łożyska się po prostu wyrzuca, co oznacza, że mamy do czynienia z ich niemal niewyczerpanym źródłem, mówi Chaudhry.
      Uzyskane wyniki bardzo nas zaskoczyły. Dotychczas żadne inne komórki nie zmieniały się w warunkach laboratoryjnych w kardiomiocyty. Te nie tylko to robiły, ale dokładnie wiedziały, gdzie doszło do uszkodzenia i tam podążały z krwioobiegiem, dodaje doktor Sangeetha Vadakke-Madathil.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Okazuje się, że białko cytoszkieletu mięśni LIM (ang. muscle LIM protein, MLP), które odgrywa ważną rolę np. w sercu, może w pewnych okolicznościach sprzyjać regeneracji aksonów (włókien nerwowych). To bardzo ważne, gdyż, jak przypomina Dietmar Fischer z Ruhr-Universität Bochum, terapie regeneracyjne do zastosowań klinicznych nie są na razie dostępne. Dzieje się tak, bo aksony albo nie wytwarzają białek potrzebnych do regeneracji, albo nie produkują ich wystarczająco dużo.
      Gdybyśmy zidentyfikowali takie białka i wyzwolili ich produkcję za pomocą terapii genowej, mielibyśmy nowe [...] metody regeneracyjne.
      Niemcy przybliżyli się do tego celu, gdy odkryli, że w pewnych warunkach MLP jest też wytwarzane w neuronach ośrodkowego układu nerwowego. Naukowcy zademonstrowali, że po aksotomii w dojrzałych komórkach zwojowych siatkówki (ang. retinal ganglion cells, RGCs) szczurów dochodzi do ekspresji MLP. Ekspresja ta koreluje ze zdolnością do zregenerowania uszkodzonych aksonów. Podczas eksperymentów knock-out genowy (rozbicie genu) MLP w RGCs upośledzał naprawę włókien nerwowych, a nadekspresja in vivo ułatwiała regenerację nerwu wzrokowego i neuronów czuciowych, nie wpływając przy tym na przeżywalność komórek nerwowych.
      MLP akumuluje się w ciele komórki, jądrze i stożkach wzrostu aksonów, które w wyniku nadekspresji ulegają znacznemu powiększeniu. Tylko frakcja ze stożków wzrostu ma znaczenie dla wydłużania aksonów.
      Dodatkowe badania sugerują, że MLP służy jako substancja sieciująca aktynę. Ułatwiając w ten sposob tworzenie filopodiów (wypustek cytoplazmatycznych), zwiększa ruchliwość stożka wzrostu.
      To pierwsze dowody na to, że MPL odgrywa fizjologiczną rolę w tkance innej niż mięśniowa. W Wydziale Fizjologii Komórki będziemy kontynuować badania, by sprawdzić, czy podobne metody mogą sprzyjać regeneracji innych regionów mózgu czy rdzenia kręgowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Suplementacja kwasami omega-3 spowalnia zanik mięśni podczas unieruchomienia.
      Zespół dr. Chrisa McGlory'ego z Diabetes Canada podzielił 20 młodych kobiet na 2 grupy. Jedna przyjmowała kwasy omega-3 (oleje rybie), a druga, kontrolna, olej słonecznikowy. Po miesięcznym okresie spożywania danego tłuszczu badanym zakładano na 2 tygodnie ortezę stawu kolanowego. Potem panie na kolejne 2 tygodnie wracały do swojej normalnej aktywności (był to okres rekonwalescencji).
      Przed i po unieruchomieniu oraz po rekonwalescencji naukowcy mierzyli wielkość, masę i siłę mięśni nóg, a także syntezę białek, o których wiadomo, że mają wpływ na regulację rozmiarów mięśni. Okazało się, że w grupie przyjmującej kwasy omega-3 zakres zaniku mięśni podczas unieruchomienia był znacząco mniejszy niż w grupie kontrolnej.
      Autorzy raportu z The FASEB Journal dodają, że po 2 tygodniach regularnej aktywności w grupie omega-3 obserwowano pełne odtworzenie objętości mięśni szkieletowych.
      Badanie sugeruje, że młode kobiety mogą stosować suplementację kwasami omega-3, by spowolnić zanik mięśni i usprawnić regenerację w sytuacji unieruchomienia jednej kończyny. Wyniki mogą mieć implikacje dla regeneracji mięśni po takich operacjach, jak rekonstrukcja więzadła przedniego krzyżowego - wyjaśnia McGlory.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Icahn School of Medicine w Mount Sinai dokonali niezwykle ważnego odkrycia w dziedzinie leczenia cukrzycy. Okazało się, że nowe połączenie dwóch klas leków prowadzi do najszybszej zaobserwowanej kiedykolwiek proliferacji dojrzałych komórek beta. To właśnie one produkują insulinę w trzustce. Odkrycie to może pozwolić na przywrócenie organizmowi zdolności do produkowania odpowiednich ilości insuliny.
      Jeden ze wspomnianych leków jest inhibitorem enzymu DYRK1A (dual specificity tyrosine-regulated kinase 1A), a drugi to inhibitor TGFβSF (transforming growth factor beta superfamily members). Działające razem środki powodują, że proliferacja komórek beta odbywa się w tempie 5–8 procent na dobę.
      Jesteśmy niezwykle podekscytowani uzyskanymi wynikami, gdyż po raz pierwszy obserwujemy replikację ludzkich komórek beta w tempie, które jest wystarczające, by zastąpić brakujące komórki. Odkryliśmy taką kombinację leków, która powoduje, że komórki beta regenerują się w tempie odpowiednim do celów leczniczych. Kolejnym poważnym wyzwaniem będzie znalezienie sposobu na dostarczenie ich do trzustki, mówi główny autor badań profesor Andrew Stewart, dyrektor Instytutu Diabetologii, Otyłości i Metabolizmu w Mount Sinai.
      Obecnie nie ma na rynku leku, który powodowałby u ludzi regenerację komórek beta. Prowadzone są badania nad transplantacją trzustki, transplantacją komórek beta czy komórek macierzystych, ale żadna z tych metod nie jest szeroko stosowana.
      Szacuje się, że na całym świecie na cukrzycę chorują 422 miliony osób, w tym 179 milionów, u których jeszcze jej nie zdiagnozowano. W ciągu ostatnich 35 lat liczba osób chorych na cukrzycę zwiększyła się 3,5-krotnie. W Polsce zdiagnozowaną cukrzycę ma 25% osób powyżej 60. roku życia. W 2013 roku na cukrzycę cierpiało 2,17 miliona Polaków (5,6%), z czego 1,22 miliona to kobiety. Przewiduje się, że do roku 2030 cukrzycę będzie miało 10% populacji Polski.
      Cukrzyca pojawia się, gdy w trzustce nie ma odpowiedniej liczby komórek beta lub gdy komórki te produkują zbyt mało insuliny, hormonu potrzebnego do utrzymania odpowiedniego poziomu cukru we krwi.
      Od dawna wiadomo, że przyczyną cukrzycy typu 1. jest utrata komórek beta, które są błędnie uznawane przez układ odpornościowy za wrogów i niszczone. W ostatnich latach okazało się, że niedobór działających komórek beta jest też istotnym elementem przyczyniającym się do cukrzycy typu 2, najbardziej rozpowszechnionego typu cukrzycy u dorosłych. Zatem opracowanie metody na zwiększenie liczby zdrowych komórek beta stało się priorytetem badań nad cukrzycą.
      Najnowsze badania bazują na dwóch artykułach, opublikowanych przez doktora Stewarta i jego zespół w Nature w roku 2015 i 2017. Najpierw naukowcy wykazali, że lek o nazwie harmina napędza podział komórkowy dojrzałych komórek beta w warunkach laboratoryjnych. Stwierdzili też, że harmina podawana myszom, których komórki beta zostały zastąpione ludzkimi komórkami beta, pomaga w utrzymaniu odpowiedniego poziomu cukru we krwi. Jednak tempo proliferacji komórek było zbyt małe, by pomóc ludziom z cukrzycą. Z kolei w roku 2017 zespół Stewarta donosił o nieprawidłowościach genetycznych w insulinomach, rzadkich zwykle łagodnych nowotworach trzustki. Te nieprawidłowości genetyczne mogły stać się celem dla leków mających na celu regenerację komórek beta.
      W swoich najnowszych badaniach Stewart i jego zespół donoszą, że połączenie inhibitora DYRK1A, takiego jak wspomniana harmina, z inhibitorem TGFβSF ma efekt synergiczny i zwiększa tempo regeneracji i proliferacji komórek beta. Jest jednak pewien problem. Jako, że środki te mają też wpływ na inne organy w organizmie, musimy opracować metodę dostarczania ich wyłącznie do komórek beta. Mamy już odpowiednie opakowanie, w którym możemy je zamknąć, a teraz potrzebujemy systemu dostaw, który dostarczy je dokładnie pod wskazany adres, mówi Stewart.
      Regeneracja komórek beta to święty Graal badań nad cukrzycą. W końcu mamy leki, które indukują proliferację komórek beta w takim tempie, że prawdopodobnie uda się leczyć ludzi z cukrzycą typu 1. i 2., stwierdza współpracownik Stewarta, profesor Peng Wang.
      Odkrycie zespołu Stewarta może doprowadzić do pojawienia się w niedalekiej przyszłości terapii, dzięki której chorzy na cukrzycę nie będą musieli zażywać insuliny.

      « powrót do artykułu
×
×
  • Create New...